Skip to main content
Log in

The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The interaction between ribavirin (RIB) with bovine serum albumin (BSA) has been investigated by fluorescence quenching technique in combination with UV–vis absorption and circular dichroism (CD) spectroscopies under the simulative physiological conditions. The quenching of BSA fluorescence by RIB was found to be a result of the formation of RIB–BSA complex. The binding constants and the number of binding sites were calculated at three different temperatures. The values of thermodynamic parameters ∆H, ∆S, ∆G at different temperatures indicate that hydrophobic and hydrogen bonds played important roles for RIB–BSA association. The binding distance r was obtained according to the theory of FÖrster’s non–radiation energy transfer. The displacement experiments was performed for identifying the location of the binding site of RIB on BSA. The effects of common ions on the binding constant of RIB and BSA were also examined. Finally, the conformational changes of BSA in the presence of RIB were also analyzed by CD spectra and Synchronous fluorescence spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Loregian Arianna, Scarpa MariaCristina, Pagni Silvana (2007) Measurement of ribavirin and evaluation of its stability in human plasma by high-performance liquid chromatography with UV detection. J Chromatogr B 856:358–364. doi:10.1016/j.jchromb.2007.05.039

    Article  CAS  Google Scholar 

  2. Olson RE, Christ DD (1996) Plasma protein binding of drugs. Annu Rep Med Chem 31:327–337

    Article  CAS  Google Scholar 

  3. Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB (2006) Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharmaceut Biomed 41:393–399. doi:10.1016/j.jpba.2005.11.037

    Article  CAS  Google Scholar 

  4. Yongnian Ni, Liu Genlan, Kokot Serge (2008) Fluorescence spectrometric study on the interactions of Isoprocarb and sodium 2-isopropylphenate with bovine serum albumin. Talanta 76:513–521. doi:10.1016/j.talanta.2008.03.037

    Article  Google Scholar 

  5. Timerbaev AR, Hartinger CG, Aleksenko SS (2006) Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem Rev 106:2224–2248. doi:10.1021/cr040704h

    Article  PubMed  CAS  Google Scholar 

  6. Gentili PL, Ortica F, Favaro G (2008) Supramolecular interaction of a spirooxazine with amino acids. J Phys Chem B 112:16793–16801. doi:10.1016/j.cplett.2007.06.132

    Article  PubMed  CAS  Google Scholar 

  7. Leslie C, Scott CJW, Cair FI (1992) Principal alterations to drug kinetics and dynamics in the elderly. Med Lab Sci 49:319–325

    PubMed  CAS  Google Scholar 

  8. Anbazhagan V, Renganathan R (2008) Study on the binding of 2,3-diazabicyclo[2.2.2]oct-2-ene with bovine serum albumin by fluorescence spectroscopy. J Lumin 128:1454–1458. doi:10.1016/j.jlumin.2008.02.004

    Article  CAS  Google Scholar 

  9. He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215. doi:10.1038/358209a0

    Article  PubMed  CAS  Google Scholar 

  10. Sjoholm I, Ekman B, Kober A, Ljungstedt–Pahlman I, Seiving B, Sjodin T (1979) Binding of drugs to human serum albumin: XI. The specificity of three binding sites as studied with albumin immobilized in microparticles. Mol Pharmacol 16:767–777

    PubMed  CAS  Google Scholar 

  11. Yue YY, Zhang YH, Zhou L, Qin J, Chen XG (2008) In vitro study on the binding of herbicide glyphosate to human serum albumin by optical spectroscopy and molecular modeling. J Photochem Photobiol B 90:26–32. doi:10.1016/j.jphotobiol.2007.10.003

    PubMed  CAS  Google Scholar 

  12. Bhattacharyya M, Chaudhuri U, Poddar RK (1990) Evidence for cooperative binding of chlorpromazine with hemoglobin: equilibrium dialysis, fluorescence quenching and oxygen release study. Biochem Biophys Res Commun 167:1146–1153. doi:10.1016/0006-291X(90)90643-2

    Article  PubMed  CAS  Google Scholar 

  13. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  14. Wang YQ, Tang BP, Zhang HM (2009) Studies on toprid and human serum albumin: spectroscopic approach. J Photochem Photobiol B 94:183–190. doi:10.1016/j.jphotobiol.2008.11.013

    Article  PubMed  CAS  Google Scholar 

  15. Guo XJ, Zhang L, Sun XD, Han XW, Guo C, Kang PL (2009) Spectroscopic studies on the interaction between sodium ozagrel and bovine serum albumin. J Mol Struct 928:114–120. doi:10.1016/j.molstruc.2009.03.023

    Article  CAS  Google Scholar 

  16. Pan XR, Liu RT, Qin PF, Wang L, Zhao XC (2010) Spectroscopic studies on the interaction of acid yellow with bovine serum albumin. J Lumin 130:611–617. doi:10.1016/j.jlumin.2009.11.004

    Article  CAS  Google Scholar 

  17. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. doi:10.1021/bi00514a017

    Article  PubMed  CAS  Google Scholar 

  18. Förster T, Sinanoglu O (eds) (1966) Modern Quantum Chemistry, vol 3. Academic Press, New York

    Google Scholar 

  19. Valeur B, Brochon JC (1999) New trends in fluorescence spectroscopy, 6th edn. Springer Press, Berlin

    Google Scholar 

  20. Ni YN, Zhang X, Kokot S (2009) Spectrometric and voltammetric studies of the interaction between quercetin and bovine serum albumin using warfarin as site marker with the aid of chemometrics. Spectrochim Acta A 71:1865–1872. doi:10.1016/j.saa.2008.07.004

    Article  Google Scholar 

  21. Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    PubMed  CAS  Google Scholar 

  22. Wang N, Ye L, Yan FF, Xu R (2008) Spectroscopic studies on the interaction of azelnidipine with bovine serum albumin. Int J Pharm 351:55–60. doi:10.1016/j.ijpharm.2007.09.016

    Article  PubMed  CAS  Google Scholar 

  23. Gao H, Lei LD, Liu JQ, Kong Q, Chen XG, Hu ZD (2004) The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectrophotometric methods. J Photochem Photobiol Part A 167:213–221. doi:10.1016/j.jphotochem.2004.05.017

    Article  CAS  Google Scholar 

  24. Zahng YZ, Dai J, Zhang XP, Yang X, Liu Y (2008) Studies of the interaction between Sudan I and bovine serum albumin by spectroscopic methods. J Mol Struct 888:152–159. doi:10.1016/j.molstruc.2007.11.043

    Article  Google Scholar 

  25. Brustein EA, Vedenkina NS, Irkova MN (1973) Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Photochem Photobiol 18:263–279. doi:10.1016/S1567-5394(01)00170-0

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge financial support of Liaoning Natural Science Foundation (Grant no: 20102087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Jia Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, XJ., Hao, AJ., Han, XW. et al. The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods. Mol Biol Rep 38, 4185–4192 (2011). https://doi.org/10.1007/s11033-010-0539-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0539-7

Keywords

Navigation