Skip to main content
Log in

The expression level of Rosa Terminal Flower 1 (RTFL1) is related with recurrent flowering in roses

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We examined the relationship between the recurrent flowering character and the expression patterns of TERMINAL FLOWER 1 (TFL1) homologs in roses, using flower buds of Rosa multiflora, R. rugosa, R. chinensis, and six other rose species and nine rose cultivars. RTFL1 (Rosa TFL1) genes were amplified from rose genomic DNA using a combination of degenerate and gene-specific primers by thermal asymmetric interlaced-PCR and normal PCR, respectively. Their copy numbers in different species were determined by Southern blots. We used real-time PCR to analyze the expression patterns of RTFL1 genes at four developmental stages (pre-sprouting, young, mid-aged, and mature flower buds). Our results show that there are at least three RTFL1 homologs in roses; RTFL1a, RTFL1b, and RTFL1c. The sequences of the homologs were more similar among the same homolog in different species than among the different homologs in the same species. For RTFL1a, we detected two copies in R. multiflora, two copies in R. rugosa, and one copy in R. chinensis. For RTFL1c, we detected one copy in R. multiflora, two copies in R. rugosa, and three copies in R. chinensis. We detected only one copy of RTFL1b in R. chinensis. RTFL1c was expressed at high levels at all four flowering stages in R. multiflora and R. rugosa, which are non-recurrent flowering species, whereas it was barely detected in R. chinensis (a recurrent flowering species) at any stage. These results were further verified in six other non-recurrent flowering species and nine recurrent flowering cultivars. These results suggest that the recurrent flowering habit in roses results from lower expression of RTFL1c, which may be related to recurrent flowering character in roses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interaction controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  2. Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  PubMed  CAS  Google Scholar 

  3. Semeniuk P (1971) Inheritance of recurrent blooming in Rosa wichuraiana. J Hered 62(3):203–204

    Google Scholar 

  4. Svejda F (1977) Breeding for improvement of flowering attributes of winterhardy Rosa kordesii Wuff hybrids. Euphytica 26(3):703–708

    Article  Google Scholar 

  5. Debener T (1999) Genetic analysis of horticulturally important morphological and physiological characters in diploid roses. Gartenbauwissenschaft 64(1):14–20

    Google Scholar 

  6. Debener T, Malek BV, Mattiesch L, Kaufmann H (2001) Genetic and molecular analysis of important characters in roses. Acta Hortic 547:45–49

    CAS  Google Scholar 

  7. Ratcliffe O, Amaya I, Vincent C, Rothstein S, Carpenter R, Coen E, Bradley D (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615

    PubMed  CAS  Google Scholar 

  8. Ji HA, David M, Victoria JW, Mark JB, Jeong HL, So YY, Stefan RH, Robert LB, Detlef W (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25:605–614

    Article  Google Scholar 

  9. Lijegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1018

    Article  Google Scholar 

  10. Ratcliffe OJ, Bradley DJ, Cone ES (1999) Separation of shoot and floral identity in Arabidopsis. Development 126:1109–1120

    PubMed  CAS  Google Scholar 

  11. Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 376:791–797

    Article  Google Scholar 

  12. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  PubMed  CAS  Google Scholar 

  13. Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102:7748–7753

    Article  PubMed  CAS  Google Scholar 

  14. Tian Z, Wang X, Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. Proc Natl Acad Sci USA 107:8563–8568

    Article  PubMed  CAS  Google Scholar 

  15. Carmona MJ, Calonje M, Martínez-Zapater JM (2007) The FT/TFL1 gene family in grapevine. Plant Mol Biol 63:637–650

    Article  PubMed  CAS  Google Scholar 

  16. Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    PubMed  CAS  Google Scholar 

  17. Amaya I, Ratcliffe OJ, Bradley DJ (1999) Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11:1405–1417

    Article  PubMed  CAS  Google Scholar 

  18. Pillitteri LJ, Lovatt CJ, Walling LL (2004) Isolation and characterization of a TERMINAL FLOWER homolog and its correlation with juvenility in citrus. Plant Physiol 135:1540–1551

    Article  PubMed  CAS  Google Scholar 

  19. Esumi T, Tao R, Yonemori K (2005) Isolation of LEAFY and TERMINAL FLOWER 1 homologues from six fruit tree species in the subfamily Maloideae of the Rosaceae. Sex Plant Reprod 17:277–287

    Article  CAS  Google Scholar 

  20. Fernandez L, Torregrosa L, Segura V, Bouquet A, Martinez-Zapater JM (2010) Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant J 61:545–557

    Article  PubMed  CAS  Google Scholar 

  21. Matsumoto S, Kouchi M, Yabuki J, Kusunoki M, Ueda Y, Fukui H (1998) Phylogenetic analyses of the genus Rosa using the matK sequence: molecular evidence for the narrow genetic background of modern roses. Scientia Hort 77:73–82

    Article  CAS  Google Scholar 

  22. Chen JY (2001) Taxonomy of flower cultivars in China. China Forestry Publisher, Beijing

    Google Scholar 

  23. Fei YL, Liu QL, Ge H (2008) Crops and their wild relatives in China—flowers. China Agricultural Press, Beijing

    Google Scholar 

  24. Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4:11–23

    Article  Google Scholar 

  25. Kawamura K, Hibrand-Saint Oyant L, Crespel L, Thouroude T, Lalanne D, Foucher F (2011) Quantitative trait loci for flowering time and inflorescence architecture in rose. Theor Appl Genet 122:661–675

    Article  PubMed  Google Scholar 

  26. Remay A, Lalanne D, Thouroude T, Le Couviour F, Hibrand-Saint Oyant L, Foucher F (2009) A survey of flowering genes reveals the role of gibberellins in floral control in rose. Theor Appl Genet 119:767–781

    Article  PubMed  CAS  Google Scholar 

  27. Foucher F, Chevalier M, Corre C, Soufflet-Freslon V, Legeai F, Hibrand-Saint Oyant L (2008) New resources for studying the rose flowering process. Genome 51:827–837

    Article  PubMed  CAS  Google Scholar 

  28. Xu Q, Wen XP, Deng XX (2004) A simple protocol for isolating genomic DNA from chestnut rose (Rosa roxburghii Tratt.) for RFLP and PCR analyses. Plant Mol Biol Report 22:301a–301g

    Article  Google Scholar 

  29. Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    Article  PubMed  CAS  Google Scholar 

  30. Tsugeki R, Kochieva EZ, Fedoroff NV (1996) A transposon insertion in the Arabidopsis SSR16 gene causes an embryo-defective lethal mutation. Plant J 10:479–489

    Article  PubMed  CAS  Google Scholar 

  31. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  32. Sambrook J, Russell DW (2001) Molecular Cloning: a laboratory manual, 3rd edn. Cold Spring Harbor, New York

    Google Scholar 

  33. Hennayake CK, Takagi S, Nishimura K, Kanechi M, Uno Y, Inagaki N (2006) Differential expression of anthocyanin biosynthesis genes in suspension culture cells of Rosa hybrida cv. Charleston. Plant Biotechnol 23:379–385

    Article  CAS  Google Scholar 

  34. Hayeshi R, Hilgendorf C, Artursson P, Augustijns P, Brodin B (2008) Comparison of drug transporter gene expression and functionality in Caco-2 cells from 10 different laboratories. Eur J Pharm Sci 35:383–396

    Article  PubMed  CAS  Google Scholar 

  35. Mimida N, Kotoda N, Ueda T, Igarashi M, Hatsuyama Y, Iwanami H, Moriya S, Abe K (2009) Four TFL1/CEN-like genes on distinct linkage groups show different expression patterns to regulate vegetative and reproductive development in apple (Malus x domestica Borkh.). Plant Cell Physiol 50:394–412

    Article  PubMed  CAS  Google Scholar 

  36. Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754

    Article  PubMed  CAS  Google Scholar 

  37. Esumi T, Tao R, Yonemori K (2008) Expression analysis of the LFY and TFL1 homologs in floral buds of Japanese pear (Pyrus pyrifolia Nakai) and Quince (Cydonia oblonga Mill.). J Jpn Soc Hortic Sci 77:128–136

    Article  CAS  Google Scholar 

  38. Debener T (2003) Inheritance of characteristics. In: Roberts AV (ed) Encyclopedia of rose science. Elsevier Academic Press, Amsterdam, pp 286–292

    Chapter  Google Scholar 

  39. Kikuchi R, Kawahigashi H, Ando T, Tonooka T, Handa H (2009) Molecular and functional characterization of PEBP genes in barley reveal the diversification of their roles in flowering. Plant Physiol 149:1341–1353

    Article  PubMed  CAS  Google Scholar 

  40. Kotoda N, Iwanami H, Takahashi S, Abe K (2006) Antisense expression of MDTFL1, a TFL1-like gene, reduces the juvenile phase in apple. J Am Soc Hort Sci 131:74–81

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the High-Tech Research and Development Plan (863), No. 2006AA10Z187, the National Natural Sciences Foundation Committee of China, No. 30871732, and a Guest Investigator Grant of the State Key Laboratory of Plant Genomics. We thank Miss Sadia Humaira (Institute of Microbiology, CAS), Dr. Yi Ma (UC, Davis), and Dr. Kate Donald (RHS Wisely Garden) for suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Man Zhang or Qing-Lin Liu.

Additional information

Li-Na Wang and Y-F Liu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, LN., Liu, YF., Zhang, YM. et al. The expression level of Rosa Terminal Flower 1 (RTFL1) is related with recurrent flowering in roses. Mol Biol Rep 39, 3737–3746 (2012). https://doi.org/10.1007/s11033-011-1149-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1149-8

Keywords

Navigation