Skip to main content
Log in

Compromised cellular responses to DNA damage accelerate chronological aging by incurring cell wall fragility in Saccharomyces cerevisiae

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Elevated levels of reactive oxygen species (ROS) can attack almost all cell components including genomic DNA to induce many types of DNA damage. In this study, we used Saccharomyces cerevisiae with various mutations in a biological network supposed to prevent deleterious effects of endogenous ROS to test the effect of such a network on yeast chronological aging. Our results showed that cells with defects in cellular antioxidation, DNA repair and DNA damage checkpoints displayed a mutation rate higher than that of wild-type strain. Moreover, the chronological life span of most mutants as determined by colony formation was found to be shorter than that of wild-type cells, especially for the mutants defective in DNA replication and DNA damage checkpoints, although the observed cell number was almost the same for wild-type and mutant strains. The mutants were finally found to be more sensitive to SDS and lysing enzyme treatment, and that the degree of sensitivity was correlated with their chronological life span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247. doi:10.1038/35041687

    Article  PubMed  CAS  Google Scholar 

  2. Costa V, Moradas-Ferreira P (2001) Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med 22(4–5):217–246

    Article  PubMed  CAS  Google Scholar 

  3. Klaunig JE, Kamendulis LM (2004) The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239–267. doi:10.1146/annurev.pharmtox.44.101802.121851

    Article  PubMed  CAS  Google Scholar 

  4. Park SG, Cha MK, Jeong W, Kim IH (2000) Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J Biol Chem 275(8):5723–5732

    Article  PubMed  CAS  Google Scholar 

  5. Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425(6961):980–984. doi:10.1038/nature02075

    Article  PubMed  CAS  Google Scholar 

  6. Huang ME, Rio AG, Nicolas A, Kolodner RD (2003) A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc Natl Acad Sci USA 100(20):11529–11534. doi:10.1073/pnas.2035018100

    Article  PubMed  CAS  Google Scholar 

  7. Doetsch PW, Morey NJ, Swanson RL, Jinks-Robertson S (2001) Yeast base excision repair: interconnections and networks. Prog Nucleic Acid Res Mol Biol 68:29–39

    Article  PubMed  CAS  Google Scholar 

  8. Rouse J, Jackson SP (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297(5581):547–551. doi:10.1126/science.1074740

    Article  PubMed  CAS  Google Scholar 

  9. Kolodner RD, Putnam CD, Myung K (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297(5581):552–557. doi:10.1126/science.1075277

    Article  PubMed  CAS  Google Scholar 

  10. Huang ME, Kolodner RD (2005) A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol Cell 17(5):709–720. doi:10.1016/j.molcel.2005.02.008

    Article  PubMed  CAS  Google Scholar 

  11. MacLean M, Harris N, Piper PW (2001) Chronological lifespan of stationary phase yeast cells; a model for investigating the factors that might influence the ageing of postmitotic tissues in higher organisms. Yeast 18(6):499–509. doi:10.1002/yea.701

    Article  PubMed  CAS  Google Scholar 

  12. Longo VD, Ellerby LM, Bredesen DE, Valentine JS, Gralla EB (1997) Human Bcl-2 reverses survival defects in yeast lacking superoxide dismutase and delays death of wild-type yeast. J Cell Biol 137(7):1581–1588

    Article  PubMed  CAS  Google Scholar 

  13. Madeo F, Frohlich E, Ligr M, Grey M, Sigrist SJ, Wolf DH, Frohlich KU (1999) Oxygen stress: a regulator of apoptosis in yeast. J Cell Biol 145(4):757–767

    Article  PubMed  CAS  Google Scholar 

  14. Herker E, Jungwirth H, Lehmann KA, Maldener C, Frohlich KU, Wissing S, Buttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164(4):501–507. doi:10.1083/jcb.200310014

    Article  PubMed  CAS  Google Scholar 

  15. Kirkwood TB, Austad SN (2000) Why do we age? Nature 408(6809):233–238. doi:10.1038/35041682

    Article  PubMed  CAS  Google Scholar 

  16. Barros MH, Bandy B, Tahara EB, Kowaltowski AJ (2004) Higher respiratory activity decreases mitochondrial reactive oxygen release and increases life span in Saccharomyces cerevisiae. J Biol Chem 279(48):49883–49888. doi:10.1074/jbc.M408918200

    Article  PubMed  CAS  Google Scholar 

  17. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–1911. doi:10.1126/science.1106653

    Article  PubMed  CAS  Google Scholar 

  18. Koc A, Gasch AP, Rutherford JC, Kim HY, Gladyshev VN (2004) Methionine sulfoxide reductase regulation of yeast lifespan reveals reactive oxygen species-dependent and -independent components of aging. Proc Natl Acad Sci USA 101(21):7999–8004. doi:10.1073/pnas.0307929101

    Article  PubMed  CAS  Google Scholar 

  19. Burhans WC, Weinberger M (2007) DNA replication stress, genome instability and aging. Nucleic Acids Res 35(22):7545–7556. doi:10.1093/nar/gkm1059

    Article  PubMed  CAS  Google Scholar 

  20. Reverter-Branchat G, Cabiscol E, Tamarit J, Sorolla MA, Angeles de la Torre M, Ros J (2007) Chronological and replicative life-span extension in Saccharomyces cerevisiae by increased dosage of alcohol dehydrogenase 1. Microbiology 153(Pt 11):3667–3676. doi:10.1099/mic.0.2007/009340-0

    Article  PubMed  CAS  Google Scholar 

  21. Myung K, Datta A, Kolodner RD (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104(3):397–408

    Article  PubMed  CAS  Google Scholar 

  22. Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):2519–2524

    Article  PubMed  CAS  Google Scholar 

  23. Tishkoff DX, Filosi N, Gaida GM, Kolodner RD (1997) A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 88(2):253–263

    Article  PubMed  CAS  Google Scholar 

  24. Salmon TB, Evert BA, Song B, Doetsch PW (2004) Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res 32(12):3712–3723. doi:10.1093/nar/gkh696

    Article  PubMed  CAS  Google Scholar 

  25. Wysocki R, Kron SJ (2004) Yeast cell death during DNA damage arrest is independent of caspase or reactive oxygen species. J Cell Biol 166(3):311–316. doi:10.1083/jcb.200405016

    Article  PubMed  CAS  Google Scholar 

  26. Enserink JM, Smolka MB, Zhou H, Kolodner RD (2006) Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J Cell Biol 175(5):729–741. doi:10.1083/jcb.200605080

    Article  PubMed  CAS  Google Scholar 

  27. Liberi G, Maffioletti G, Lucca C, Chiolo I, Baryshnikova A, Cotta-Ramusino C, Lopes M, Pellicioli A, Haber JE, Foiani M (2005) Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev 19(3):339–350. doi:10.1101/gad.322605

    Article  PubMed  CAS  Google Scholar 

  28. Qi H, Li TK, Kuo D, Nur EKA, Liu LF (2003) Inactivation of Cdc13p triggers MEC1-dependent apoptotic signals in yeast. J Biol Chem 278(17):15136–15141. doi:10.1074/jbc.M212808200

    Article  PubMed  CAS  Google Scholar 

  29. Lans H, Hoeijmakers JH (2006) Cell biology: ageing nucleus gets out of shape. Nature 440(7080):32–34. doi:10.1038/440032a

    Article  PubMed  CAS  Google Scholar 

  30. Qin H, Lu M, Goldfarb DS (2008) Genomic instability is associated with natural life span variation in Saccharomyces cerevisiae. PLoS One 3(7):e2670. doi:10.1371/journal.pone.0002670

    Article  PubMed  Google Scholar 

  31. Evert BA, Salmon TB, Song B, Jingjing L, Siede W, Doetsch PW (2004) Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. J Biol Chem 279(21):22585–22594. doi:10.1074/jbc.M400468200

    Article  PubMed  CAS  Google Scholar 

  32. Heinisch JJ, Lorberg A, Schmitz HP, Jacoby JJ (1999) The protein kinase C-mediated MAP kinase pathway involved in the maintenance of cellular integrity in Saccharomyces cerevisiae. Mol Microbiol 32(4):671–680

    Article  PubMed  CAS  Google Scholar 

  33. Stewart MS, Krause SA, McGhie J, Gray JV (2007) Mpt5p, a stress tolerance- and lifespan-promoting PUF protein in Saccharomyces cerevisiae, acts upstream of the cell wall integrity pathway. Eukaryot Cell 6(2):262–270. doi:10.1128/EC.00188-06

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, S., Zhang, Xe., Chen, G. et al. Compromised cellular responses to DNA damage accelerate chronological aging by incurring cell wall fragility in Saccharomyces cerevisiae . Mol Biol Rep 39, 3573–3583 (2012). https://doi.org/10.1007/s11033-011-1131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1131-5

Keywords

Navigation