Skip to main content
Log in

Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Silent Information Regulator 2 (Sir2), a conserved NAD+-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phasedependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aguilaniu, H., Gustafsson, L., Rigoulet, M., and Nystrom, T. 2003. Asymmetric inheritance of oxidatively damaged proteins during cytokinesis. Science 299, 1751–1753.

    Article  CAS  PubMed  Google Scholar 

  • Beers, R.F., and Sizer, I.W. 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem. 195, 133–140.

    CAS  PubMed  Google Scholar 

  • Bishop, N.A. and Guarente, L. 2007. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nat. Rev. Genet. 8, 835–844.

    Article  CAS  PubMed  Google Scholar 

  • Burtner, C.R., Murakami, C.J., Kennedy, B.K., and Kaeberlein, M. 2009. A molecular mechanism of chronological aging in yeast. Cell Cycle 8, 1256–1270.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • DeRisi, J.L., Iyer, V.R., and Brown, P.O. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686.

    Article  CAS  PubMed  Google Scholar 

  • Erjavec, N. and Nystrom, T. 2007. Sir2p-dependent protein segregation gives rise to a superior reactive oxygen species management in the progeny of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 104, 10877–10891.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., Mc-Grew, K., and Longo, V.D. 2005. Sir2 blocks extreme life-span extension. Cell 123, 655–667.

    Article  CAS  PubMed  Google Scholar 

  • Galdieri, L., Mehrotra, S., Yu, S., and Vancura, A. 2010. Transcriptional regulation in yeast during diauxic shift and stationary phase. Omics 14, 629–638.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gottschling, D.E., Aparicio, O.M., Billington, B.L., and Zakian, V.A. 1990. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63, 751–762.

    Article  CAS  PubMed  Google Scholar 

  • Gray, J.V., Petsko, G.A., Johnston, G.C., Ringe, D., Singer, R.A., and Werner-Washburne, M. 2004. “Sleeping beauty”: quiescence in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 68, 187–206.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ivy, J.M., Klar, A.J., and Hicks, J.B. 1986. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 6, 688–702.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaeberlein, M., Andalis, A.A., Fink, G.R., and Guarente, L. 2002. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol. Cell. Biol. 22, 8056–8066.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaeberlein, M., McVey, M., and Guarente, L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keogh, M.C., Mennella, T.A., Sawa, C., Berthelet, S., Krogan, N.J., Wolek, A., Podolny, V., Carpenter, L.R., Greenblatt, J.F., Baetz, K., and et al. 2006. The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev. 20, 660–665.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laun, P., Pichova, A., Madeo, F., Fuchs, J., Ellinger, A., Kohlwein, S., Dawes, I., Frohlich, K.U., and Breitenbach, M. 2001. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol. Microbiol. 39, 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  • Lin, S.J., Ford, E., Haigis, M., Liszt, G., and Guarente, L. 2004. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 18, 12–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu, B., Larsson, L., Caballero, A., Hao, X., Oling, D., Grantham, J., and Nystrom, T. 2010. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 140, 257–267.

    Article  CAS  PubMed  Google Scholar 

  • Longo, V.D. and Fabrizio, P. 2012. Chronological aging in Saccharomyces cerevisiae. Subcell Biochem. 57, 101–121.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Longo, V.D., Gralla, E.B., and Valentine, J.S. 1996. Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo. J. Biol. Chem. 271, 12275–12280.

    Article  CAS  PubMed  Google Scholar 

  • Longo, V.D., Shadel, G.S., Kaeberlein, M., and Kennedy, B. 2012. Replicative and chronological aging in Saccharomyces cerevisiae. Cell Metab. 16, 18–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., and Kroemer, G. 2013. The hallmarks of aging. Cell 153, 1194–1217.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medvedik, O., Lamming, D.W., Kim, K.D., and Sinclair, D.A. 2007. MSN2 and MSN4 link calorie restriction and TOR to sirtuinmediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol. 5, e271.

    Article  Google Scholar 

  • Merksamer, P.I., Liu, Y., He, W., Hirschey, M.D., Chen, D., and Verdin, E. 2013. The sirtuins, oxidative stress and aging: an emerging link. Aging (Albany NY) 5, 144–150.

    CAS  Google Scholar 

  • Molin, M., Yang, J., Hanzen, S., Toledano, M.B., Labarre, J., and Nystrom, T. 2011. Life span extension and H2O2 resistance elicited by caloric restriction require the peroxiredoxin Tsa1 in Saccharomyces cerevisiae. Mol. Cell. 43, 823–833.

    Article  CAS  PubMed  Google Scholar 

  • Morano, K.A., Grant, C.M., and Moye-Rowley, W.S. 2012. The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190, 1157–1195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mortimer, R.K. and Johnston, J.R. 1959. Life span of individual yeast cells. Nature 183, 1751–1752.

    Article  CAS  PubMed  Google Scholar 

  • Murakami, C., Delaney, J.R., Chou, A., Carr, D., Schleit, J., Sutphin, G.L., An, E.H., Castanza, A.S., Fletcher, M., Goswami, S., and et al. 2012. pH neutralization protects against reduction in replicative lifespan following chronological aging in yeast. Cell. Cycle 11, 3087–3096.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murakami, C.J., Burtner, C.R., Kennedy, B.K., and Kaeberlein, M. 2008. A method for high-throughput quantitative analysis of yeast chronological life span. J. Gerontol. A Biol. Sci. Med. Sci. 63, 113–121.

    Article  PubMed  Google Scholar 

  • Pan, Y. 2011. Mitochondria, reactive oxygen species, and chronological aging: a message from yeast. Exp. Gerontol. 46, 847–852.

    Article  CAS  PubMed  Google Scholar 

  • Reverter-Branchat, G., Cabiscol, E., Tamarit, J., and Ros, J. 2004. Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction. J. Biol. Chem. 279, 31983–31989.

    Article  CAS  PubMed  Google Scholar 

  • Rine, J. and Herskowitz, I. 1987. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116, 9–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sinclair, D.A. and Guarente, L. 1997. Extrachromosomal rDNA circles-a cause of aging in yeast. Cell 91, 1033–1042.

    Article  CAS  PubMed  Google Scholar 

  • Smith, D.L., McClure, J.M., Matecic, M., and Smith, J.S. 2007. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins. Aging Cell 6, 649–662.

    Article  CAS  PubMed  Google Scholar 

  • Vendrell, A., Martinez-Pastor, M., Gonzalez-Novo, A., Pascual-Ahuir, A., Sinclair, D.A., Proft, M., and Posas, F. 2011. Sir2 histone deacetylase prevents programmed cell death caused by sustained activation of the Hog1 stress-activated protein kinase. EMBO Rep. 12, 1062–1068.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Werner-Washburne, M., Braun, E., Johnston, G.C., and Singer, R.A. 1993. Stationary phase in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 57, 383–401.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wierman, M.B. and Smith, J.S. 2013. Yeast sirtuins and the regulation of aging. FEMS Yeast Res. doi: 10.1111/1567-1364.12115.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Yoon Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W.K., Kim, Y.H., Kim, BS. et al. Growth phase-dependent roles of Sir2 in oxidative stress resistance and chronological lifespan in yeast. J Microbiol. 52, 652–658 (2014). https://doi.org/10.1007/s12275-014-4173-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-4173-2

Keywords

Navigation