Skip to main content
Log in

Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The expression profiles of three Brassica rapa metallothionein genes (BrMT 13) were determined in 7-day-old seedlings exposed to various exogenous factors including plant hormones, heavy metals and abiotic stresses. BrMT1, BrMT2, and BrMT3 were representatives of MT gene type 1, type 2, and type 3, respectively, according to their cysteine alignment. BrMT2 showed a relatively higher basal expression level compared to BrMT1 and BrMT3 under normal conditions. The BrMT1 transcript was markedly increased by various factors including ethephon, polyethylene glycol and hydrogen peroxide, with no down-regulation evident. On the contrary, BrMT2 expression was down-regulated by abscisic acid, salicylic acid, and methyl jasmonate. Heavy metals did not increase BrMT2 expression. BrMT3 expression was only marginally and non-significantly up- and down-regulated by the stress conditions tested. Promoter regions of BrMT1 and BrMT2 display different cis-acting elements supporting the different responses of both genes against various stresses. The results demonstrate the differential regulation of BrMT13 by various plant exogenous factors, and indicate the utility of the BrMT1 promoter as a multiple stress inducible promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Br:

Brassica rapa

MT:

Metallothionein

PC:

Phytochelatins

PEG:

Polyethylene glycol

ROS:

Reactive oxygen species

SA:

Salicylic acid

ABA:

Abscisic acid

MeJA:

Methyl jasmonate

ET:

Ethephon

H2O2 :

Hydrogen peroxide

UBQ:

Ubiquitin

References

  1. MacFarlane GR (2002) Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems. Mar Pollut Bull 44(3):244–256

    Article  PubMed  CAS  Google Scholar 

  2. Ebbs S, Uchil S (2008) Cadmium and zinc induced chlorosis in Indian mustard [Brassica juncea (L.) Czern] involves preferential loss of chlorophyll b. Photosynthetica 46(1):49–55

    Article  CAS  Google Scholar 

  3. Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153(1):137–147

    Article  PubMed  CAS  Google Scholar 

  4. Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295(Pt 1):1–10

    PubMed  CAS  Google Scholar 

  5. Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179(1):21–30

    Article  PubMed  CAS  Google Scholar 

  6. Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    Article  PubMed  CAS  Google Scholar 

  7. Kaegi JHR, Schaeffer A (1988) Biochemistry of metallothionein. Biochemistry 27(23):8509–8515

    Article  CAS  Google Scholar 

  8. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  9. Margoshes M, Vallee BL (1957) A cadmium protein from equine kidney cortex. J Am Chem Soc 79(17):4813–4814

    Article  CAS  Google Scholar 

  10. Zhigang A, Cuijie L, Yuangang Z, Yejie D, Wachter A, Gromes R, Rausch T (2006) Expression of BjMT2, a metallothionein 2 from Brassica juncea, increases copper and cadmium tolerance in Escherichia coli and Arabidopsis thaliana, but inhibits root elongation in Arabidopsis thaliana seedlings. J Exp Bot 57(14):3575–3582

    Article  PubMed  Google Scholar 

  11. Chen HJ, Hou WC, Yang CY, Huang DJ, Liu JS, Lin YH (2003) Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (Ipomoea batatas) leaves. J Plant Physiol 160(5):547–555

    Article  PubMed  CAS  Google Scholar 

  12. Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60(1):339–349

    Article  PubMed  CAS  Google Scholar 

  13. Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29(5):1232–1238

    Article  PubMed  CAS  Google Scholar 

  14. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotech 13(5):468–474

    Article  CAS  Google Scholar 

  15. Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in indian mustard by soil-applied chelating agents. Environ Sci Technol 31(3):860–865

    Article  Google Scholar 

  16. Kim SH, Lee H, Song W, Choi K, Hur Y (2007) Chloroplast-targeted BrMT1 (Brassica rapa type-1 metallothionein) enhances resistance to cadmium and ROS in transgenic arabidopsis plants. J Plant Biol 50(1):1–7

    Article  Google Scholar 

  17. Gisbert C, Clemente R, Navarro-Aviñó J, Baixauli C, Ginér A, Serrano R, Walker D, Bernal M (2006) Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain. Environ Exp Bot 56(1):19–27

    Article  CAS  Google Scholar 

  18. Ishikawa S, Ae N, Murakami M, Wagatsuma T (2006) Is Brassica juncea a suitable plant for phytoremediation of cadmium in soils with moderately low cadmium contamination?—Possibility of using other plant species for Cd-phytoextraction. Soil Sci Plant Nutr 52(1):32–42

    Article  CAS  Google Scholar 

  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  20. Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70(1–2):219–229

    Article  PubMed  CAS  Google Scholar 

  21. Yuan J, Chen D, Ren Y, Zhang X, Zhao J (2008) Characteristic and expression analysis of a metallothionein gene, OsMT2b, down-regulated by cytokinin suggests functions in root development and seed embryo germination of rice. Plant Physiol 146(4):1637–1650

    Article  PubMed  CAS  Google Scholar 

  22. Huang G-Y, Wang Y-S (2009) Expression analysis of type 2 metallothionein gene in mangrove species (Bruguiera gymnorrhiza) under heavy metal stress. Chemosphere 77(7):1026–1029

    Article  PubMed  CAS  Google Scholar 

  23. Bratic AM, Majic DB, Samardzic JT, Maksimovic VR (2009) Functional analysis of the buckwheat metallothionein promoter: tissue specificity pattern and up-regulation under complex stress stimuli. J Plant Physiol 166(9):996–1000

    Article  PubMed  CAS  Google Scholar 

  24. Fukuzawa H, Yu LH, Umeda-Hara C, Tagawa M, Uchimiya H (2004) The rice metallothionein gene promoter does not direct foreign gene expression in seed endosperm. Plant Cell Rep 23(4):231–235

    Article  PubMed  CAS  Google Scholar 

  25. Ahmadi N, Dellerme S, Laplaze L, Guermache F, Auguy F, Duhoux E, Bogusz D, Guiderdoni E, Franche C (2003) The promoter of a metallothionein-like gene from the tropical tree casuarina glauca is active in both annual dicotyledonous and monocotyledonous plants. Transgenic Res 12(3):271–281

    Article  PubMed  CAS  Google Scholar 

  26. Guo W-J, Bundithya W, Goldsbrough PB (2003) Characterization of the Arabidopsis metallothionein gene family: tissue-specific expression and induction during senescence and in response to copper. New Phytol 159(2):369–381

    Article  CAS  Google Scholar 

  27. Lü S, Gu H, Yuan X, Wang X, Wu A-M, Qu L, Liu J-Y (2007) The GUS reporter-aided analysis of the promoter activities of a rice metallothionein gene reveals different regulatory regions responsible for tissue-specific and inducible expression in transgenic Arabidopsis. Transgenic Res 16(2):177–191

    Article  PubMed  Google Scholar 

  28. Navabpour S, Morris K, Allen R, Harrison E, A-H-Mackerness S, Buchanan-Wollaston V (2003) Expression of senescence-enhanced genes in response to oxidative stress. J Exp Bot 54(391):2285–2292

    Article  PubMed  CAS  Google Scholar 

  29. Butt A, Mousley C, Morris K, Beynon J, Can C, Holub E, Greenberg JT, Buchanan-Wollaston V (1998) Differential expression of a senescence-enhanced metallothionein gene in Arabidopsis in response to isolates of Peronospora parasitica and Pseudomonas syringae. Plant J 16(2):209–221

    Article  PubMed  CAS  Google Scholar 

  30. Chatthai M, Osusky M, Osuska L, Yevtushenko D, Misra S (2004) Functional analysis of a Douglas-fir metallothionein-like gene promoter: transient assays in zygotic and somatic embryos and stable transformation in transgenic tobacco. Planta 220(1):118–128

    Article  PubMed  CAS  Google Scholar 

  31. Ramli Z, Abdullah S (2010) Functional characterisation of the oil palm type 3 metallothionein-like gene (MT3-B) promoter. Plant Mol Biol Report 28(3):531–541

    Article  CAS  Google Scholar 

  32. Omidvar V, Abdullah S, Izadfard A, Ho C, Mahmood M (2010) The oil palm metallothionein promoter contains a novel AGTTAGG motif conferring its fruit-specific expression and is inducible by abiotic factors. Planta 232(4):925–936

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the KRIBB initiative program and grant from Cabbage Genomics Assisted Breeding Supporting Research Center funded to H. Kim by Ministry for Food, Agriculture, Forestry and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Soo Kwak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, Y.O., Kim, S.H., Lee, J. et al. Three Brassica rapa metallothionein genes are differentially regulated under various stress conditions. Mol Biol Rep 39, 2059–2067 (2012). https://doi.org/10.1007/s11033-011-0953-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0953-5

Keywords

Navigation