Skip to main content

Advertisement

Log in

Expression of yeast Hem1 controlled by Arabidopsis HemA1 promoter enhances leaf photosynthesis in transgenic tobacco

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A gene encoding aminolevulinate synthase (ALA-S) in yeast (Saccharomyces cerevisiae YHem1) was introduced into the genome of tobacco (Nicoliana tabacum) under the control of Arabidopsis thaliana HemA1 gene promoter (AtHemA1 P). All transgenic lines transcribed the YHem1 gene, especially under light condition. The capacity to synthesize ALA and therefore chlorophyll was increased in transformed plants. Determination of gas exchange suggested that transgenic plants had significantly higher level of net photosynthetic rate (P n ), stomatal conductance (G s ) and transpiration rate (T r ), compared to the wild type (WT). Analysis with a modulated chlorophyll fluorometer demonstrated that the genetic transformation also caused a significant increase in photochemical efficiency of PSII (\( F^{\prime}_{v} /F^{\prime}_{m} \)), actual photochemical efficiency (Ф PSII ), photochemical quenching (qP), electron transfer rate (ETR) and the energy proportion in photochemistry (Pc), but decrease in proportion in heat dissipation (Hd). Chlorophyll-a fast fluorescence measurement and JIP-test indicated that photosynthetic performance index on cross section basis (PI CS ) and electron transport flux (ET o /CS) of transgenic tobacco were increased remarkably. And the probability that a trapped exciton can move a electron into the electron transport chain beyond Q A (Ψ o ) and the density of active reaction centers (RC/CS) were also increased obviously in transgenic tobacco. These results imply that transgenic tobacco plants expressing YHem1 gene had higher photosynthetic capacity and energy conversion efficiency than the WT plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beale SI (2006) Biosynthesis of 5-aminolevulinic acid. In: Grimm B, Porra RJ, Rüdiger W, Scheer H (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Springer, Netherlands, pp 147–158

    Google Scholar 

  2. Bindu RC, Vivekanandan M (1998) Hormonal activities of 5-aminolevulinic acid in callus induction and micropropagation. Plant Growth Regul 26:15–18

    Article  CAS  Google Scholar 

  3. Rebeiz CA, Juvik JA, Rebeiz CC (1988) Porphyric insecticides 1. Concept and phenomenology. Pestic Biochem Phys 30:11–27

    Article  CAS  Google Scholar 

  4. Rebeiz CA, Montazerzouhoor A, Hopen HJ, Wu SM (1984) Photodynamic herbicides 1. Concept and phenomenology. Enzyme Microb Technol 6:390–401

    Article  CAS  Google Scholar 

  5. Hotta Y, Tanaka T, Takaoka H, Takeuchi Y, Konnai M (1997) New physiological effects of 5-aminolevulinic acid in plants: the increase of photosynthesis, chlorophyll content, and plant growth. Biosci Biotech Bioch 61:2025–2028

    Article  CAS  Google Scholar 

  6. Watanabe K, Tanaka T, Hotta Y, Kuramochi H, Takeuchi Y (2000) Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul 32:99–103

    Article  CAS  Google Scholar 

  7. Nishihara E, Kondo K, Parvez MM, Takahashi K, Watanabe K, Tanaka K (2003) Role of 5-aminolevulinic acid (ALA) on active oxygen-scavenging system in NaCl-treated spinach (Spinacia oleracea). J Plant Physiol 160:1085–1091

    Article  PubMed  CAS  Google Scholar 

  8. Watanabe K, Ryoji O, Rasid MM, Suliman A, Tohru T, Hitoshi K, Yasutomo T (2004) Effects of 5-aminolevulinic acid to recover salt damage on cotton, tomato, and wheat seedlings in Saudi-Arabia. J Arid Land Studies 14:105–113

    Google Scholar 

  9. Wang LJ, Jiang WB, Liu H, Liu WQ, Kang L, Hou XL (2005) Promotion by 5-aminolevulinic acid of germination of pakchoi (Brassica campestris ssp chinensis var. communis Tsen et Lee) seeds under salt stress. J Integr Plant Biol 47:1084–1091

    Article  CAS  Google Scholar 

  10. Wang LJ, Jiang WB, Huang BJ (2004) Promotion of 5-aminolevulinic acid on photosynthesis of melon (Cucumis melo) seedlings under low light and chilling stress conditions. Physiol Plant 121:258–264

    Article  PubMed  CAS  Google Scholar 

  11. Wang LJ, Sun YP, Kang L, Zhang ZP (2010) Effects of 5-aminolevulinic acid (ALA) on photosynthesis and chlorophyll fluorescence of watermelon seedlings grown under low light and low temperature conditions. Acta Hort 856:159–166

    CAS  Google Scholar 

  12. Sun YP, Zhang ZP, Wang LJ (2009) Promotion of 5-aminolevulinic acid treatment on leaf photosynthesis is related with increase of antioxidant enzyme activity in watermelon seedlings grown under shade condition. Photosynthetica 47:347–354

    Article  CAS  Google Scholar 

  13. Iida K, Mimura I, Kajiwara M (2002) Evaluation of two biosynthetic pathways to delta-aminolevulinic acid in Euglena gracilis. Eur J Biochem 269:291–297

    Article  PubMed  CAS  Google Scholar 

  14. von Wettstein D, Gough S, Kannangara CG (1995) Chlorophyll biosynthesis. Plant Cell 7:1039–1057

    Article  Google Scholar 

  15. van der Werf MJ, Zeikus JG (1996) 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl Environ Microbiol 62:3560–3566

    PubMed  Google Scholar 

  16. Wang JQ, Wu JH, Zhang ZM (2006) Expression of 5-aminolevulinic acid synthase in recombinant Escherichia coli. World J Microbiol Biotechnol 22:461–468

    Article  Google Scholar 

  17. Zavgorodnyaya A, Papenbrock J, Grimm B (1997) Yeast 5-aminolevulinate synthase provides additional chlorophyll precursor in transgenic tobacco. Plant J 12:169–178

    Article  PubMed  CAS  Google Scholar 

  18. Jung S, Yang K, Lee DE, Back K (2004) Expression of Bradyrhizobium japonicum 5-aminolevulinic acid synthase induces severe photodynamic damage in transgenic rice. Plant Sci 167:789–795

    Article  CAS  Google Scholar 

  19. Jung S, Back K, Yang K, Kuk YI, Chon SU (2008) Defence response produced during photodynamic damage in transgenic rice overexpressing 5-aminolevulinic acid synthase. Photosynthetica 46:3–9

    Article  CAS  Google Scholar 

  20. McCormac AC, Fischer A, Kumar AM, Soll D, Terry MJ (2001) Regulation of HEMA1 expression by phytochrome and a plastid signal during de-etiolation in Arabidopsis thaliana. Plant J 25:549–561

    Article  PubMed  CAS  Google Scholar 

  21. Zhang ZP, Yao QH, Wang LJ (2010) Expression of yeast Hem1 gene controlled by Arabidopsis HemA1 promoter improves salt tolerance in Arabidopsis plants. BMB Rep 43:330–336

    Article  PubMed  CAS  Google Scholar 

  22. Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusions-beta-glucuronidase as a sensitive and versatile gene fusion marker in higher-plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  23. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, NY, pp 636–648

    Google Scholar 

  24. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254

    Article  CAS  Google Scholar 

  25. Harel E, Klein S (1972) Light dependent formation of δ-aminolevulinic acid in etiolated leaves of higher plants. Biochem Biophy Res Comm 49:364–370

    Article  CAS  Google Scholar 

  26. Mauzerall D, Cranick S (1956) The occurrence and determination of δ-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 219:435–446

    PubMed  CAS  Google Scholar 

  27. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymol 148:350–382

    Article  CAS  Google Scholar 

  28. Lombardo ME, Araujo LS, Batlle A (2003) 5-Aminolevulinic acid synthesis in epimastigotes of Trypanosoma cruzi. Int J Biochem Cell B 35:1263–1271

    Article  CAS  Google Scholar 

  29. Adams BD, Adams WW, Barker DH, Logan BA, Bowling DR, Verhoeven AS (1996) Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiol Plant 98:253–264

    Article  Google Scholar 

  30. Strasser RJ, Govindjee (1992) The Fo and the O–J–I–P fluorescence rise in higher plants and algae. In: Argyroudi-Akoyunoglou JH (ed) Regulation of chloroplast biogenesis. Plenum Press, NY, pp 423–426

    Google Scholar 

  31. Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Springer, Netherlands, pp 321–362

    Google Scholar 

  32. Memon SA, Hou XL, Wang LJ, Li Y (2009) Promotive effect of 5-aminolevulinic acid on chlorophyll, antioxidative enzymes and photosynthesis of Pakchoi (Brassica campestris ssp. chinensis var. communis Tsen et Lee). Acta Physiol Plant 31:51–57

    Article  CAS  Google Scholar 

  33. Youssef T, Awad MA (2008) Mechanisms of enhancing photosynthetic gas exchange in date palm seedlings (Phoenix dactylifera L.) under salinity stress by a 5-aminolevulinic acid-based fertilizer. J Plant Growth Regul 27:1–9

    Article  CAS  Google Scholar 

  34. Tanaka Y, Tanaka A, Tsuji H (1993) Effects of 5-aminolevulinic acid on the accumulation of chlorophyll-b and apoproteins of the light-harvesting chlorophyll a/b-protein complex of photosystem-II. Plant Cell Physiol 34:465–472

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Science Foundation of China (30471181).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Ju Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, ZP., Yao, QH. & Wang, LJ. Expression of yeast Hem1 controlled by Arabidopsis HemA1 promoter enhances leaf photosynthesis in transgenic tobacco. Mol Biol Rep 38, 4369–4379 (2011). https://doi.org/10.1007/s11033-010-0564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0564-6

Keywords

Navigation