Skip to main content
Log in

Over-expression of a Rab family GTPase from phreatophyte Prosopis juliflora confers tolerance to salt stress on transgenic tobacco

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Plant growth and productivity are adversely affected by various abiotic and biotic stress factors. In our previous study, we used Prosopis juliflora, an abiotic stress tolerant tree species of Fabaceae, as a model plant system for isolating genes functioning in abiotic stress tolerance. Here we report the isolation and characterization of a Rab family GTPase from P. juliflora (Pj Rab7) and the ability of this gene to confer salt stress tolerance in transgenic tobacco. Northern analysis for Pj Rab7 in P. juliflora leaf tissue revealed up-regulation of this gene under salt stress under the concentrations and time points analyzed. Pj Rab7 transgenic tobacco lines survived better under conditions of 150 mM NaCl stress compared to control un-transformed plants. Pj Rab7 transgenic plants were found to accumulate more sodium than control plants during salt stress. The results of our studies could be used as a starting point for generation of crop plants tolerant to abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    Article  CAS  PubMed  Google Scholar 

  2. Bray EA, BaileySerres J, Weretilnyk E (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Responses to abiotic stresses. American Society of Plant Physiologists, Rockville, pp 1158–1249

    Google Scholar 

  3. Flowers TJ, Yeo AR (1995) Breeding for salinity tolerance in crop plants: where next? Aust J Plant Physiol 22:875–884

    Article  Google Scholar 

  4. Burkart A, Simpson BB (1977) The genus Prosopis and annoted key to the species of the world. In: Simpson BB (ed) Mesquite: its biology in two desert ecosystems. Dowden, Hutchinson and Ross, Stroudsburg, pp 201–215

    Google Scholar 

  5. Drake H (1993) Trees for dry lands New York. International scientific publishing, New York, p 370

    Google Scholar 

  6. Geilfus F (1994) El árbol al servicio del agricultor Guía de especies Turrialba, Costa Rica: EndaCaribeCentro Agronómico Tropical de Investigación y Enseñanza 597, vol 2

  7. Shirke PA, Pathre UV (2004) Influence of leaf-to-air vapor pressure deficit (VPD) on the biochemistry and physiology of photosynthesis in Prosopis juliflora. J Exp Bot 55:120–211

    Article  Google Scholar 

  8. Sinha S, Rai UN, Bhatt K, Pandey K, Gupta AK (2005) Fly-ash-induced oxidative stress and tolerance in Prosopis juliflora L grown on different amended substrates. Environ Monit Assess 102:447–457

    Article  CAS  PubMed  Google Scholar 

  9. Zerial M, McBride H (2001) Rab proteins as membrane organizers. Nat Rev Mol Cell Bio 2:107–117

    Article  CAS  Google Scholar 

  10. Randall SK, Crowell DN (1999) Protein isoprenylation in plants. Crit Rev Biochem Mol 34:325–338

    Article  CAS  Google Scholar 

  11. PereiraLeal JB, Seabra MC (2001) Evolution of the Rab family of small GTP binding proteins. J Mol Biol 313:889–901

    Article  CAS  Google Scholar 

  12. Feng Y, Press B, Wandinger-Ness A (1995) Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol 131:1435–1452

    Article  CAS  PubMed  Google Scholar 

  13. Mukhopadhyay A, Funato K, Stahl PD (1997) Rab7 regulates transport from early to late endocytic compartments in Xenopus oocytes. J Biol Chem 272:13055–13059

    Article  CAS  PubMed  Google Scholar 

  14. Price A, Seals D, Wickner W, Ungermann C (2000) The docking stage of yeast vacuole fusion requires the transfer of proteins from a cis-SNARE complex to a Rab/Ypt protein. J Cell Biol 148:1231–1238

    Article  CAS  PubMed  Google Scholar 

  15. Paris N, Stanley CM, Jones RL, Rogers JC (1996) Plant cells contain two functionally distinct vacuolar compartments. Cell 85:563–572

    Article  CAS  PubMed  Google Scholar 

  16. Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4:149–155

    Article  PubMed  Google Scholar 

  17. George S, Venkataraman Gayatri, Parida Ajay (2007) Identification of stress induced genes from the drought tolerant plant Prosopis juliflora (Swartz) DC through analysis of expressed sequence tags. Genome 50:470–478

    Article  CAS  PubMed  Google Scholar 

  18. Emanuelsson O, Nielsen H, Brunak S, von Gunnar Heijne (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300:1005–1016

    Article  CAS  PubMed  Google Scholar 

  19. Nielsen H, Jacob Engelbrecht, Soren Brunak, von Gunnar Heijne (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:16

    Article  Google Scholar 

  20. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker John M (ed) The proteomics protocols handbook. Humana Press, New York, pp 571–607

    Chapter  Google Scholar 

  21. Tusnády GE, Simon I (1998) Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J Mol Biol 283:489–506

    Article  PubMed  Google Scholar 

  22. Tusnády GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:84950

    Article  Google Scholar 

  23. Bauer MA, Anderson JB, Derbyshire MK et al (2007) CDD: a conserved domain database for interactive domain family analysis. Nucleic Acid Res 35:237–240

    Article  Google Scholar 

  24. Murashige T, Skoog F (1962) A revised method for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  25. Chomczynski P, Sacchi N (1987) Single step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  26. Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  27. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed  Google Scholar 

  28. Adrian WJ (1973) A Comparison of a wet pressure digestion method with other commonly used wet and dry ashing methods. Analyst 98:213

    Article  CAS  Google Scholar 

  29. Stenmark H, Olkkonen VM (2001) The Rab GTPase family. Genome Biol 2:3007.1–3007.7

    Article  Google Scholar 

  30. Moore I, Schell J, Palme K (1995) Subclass specific sequence motifs identified in Rab GTPases. Trends Biochem Sci 20:1012

    Article  Google Scholar 

  31. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Phys 51:463–499

    Article  CAS  Google Scholar 

  32. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by over expression of a vacuolar Na+/H+ antiporter in Arabidopsis. Science 285:1256–1258

    Article  CAS  PubMed  Google Scholar 

  33. Xiong L, Lee H, Ishitani M, Zhu JK (2002) Regulation of osmotic stress responsive gene expression by LOS6/ABA1 locus in Arabidopsis. J Biol Chem 277:8588–8596

    Article  CAS  PubMed  Google Scholar 

  34. Leyman B, Geelen D, Blatt MR (1999) Localization and control of expression of NtSyr1, a tobacco SNARE protein. Plant J 24:369–381

    Article  Google Scholar 

  35. Levine A, Belenghi B, Damari-Weisler H, Granot D (2001) Vesicle associated membrane protein of Arabidopsis suppresses bax-induced apoptosis in yeast downstream of oxidative burst. J Biol Chem 276:46284–46289

    Article  CAS  PubMed  Google Scholar 

  36. Cavalli V, Vilbois F, Corti M, Marcote MJ, Tamura K, Karin M, Arkinstall S, Gruenberg J (2001) The stress induced MAP kinase p38 regulates endocytic trafficking via the GDI: Rab5 complex. Mol Cell 7:421–432

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out with a grant from Department of Biotechnology (DBT), Government of India. Ms. Suja George is a Senior Research Fellow of the Council of Scientific and Industrial Research (CSIR), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Parida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

George, S., Parida, A. Over-expression of a Rab family GTPase from phreatophyte Prosopis juliflora confers tolerance to salt stress on transgenic tobacco. Mol Biol Rep 38, 1669–1674 (2011). https://doi.org/10.1007/s11033-010-0278-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0278-9

Keywords

Navigation