Skip to main content
Log in

Semi-rational site-directed mutagenesis of phyI1s from Aspergillus niger 113 at two residue to improve its phytase activity

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Through alignment of amino acid sequences among different phytases, we found that the amino acid at residues 53 and 91 vary broadly. To prove that the amino acid at residues 53 and 91 were related to phytase specific activity, two single mutant phyI1s Q53R and K91D were obtained by site-directed mutagenesis strategy. None of the single amino acid residues in the two mutants was in a position reported to be important for catalysis or substrate binding. Kinetic analysis of the phytase activity of the two mutants (Q53R and K91D) indicated that the mutants were attributed to 2.2- and 1.5-fold increased specific activity, and a 1.47- and 1.16-fold increased affinity for sodium phytate. In addition, the overall catalytic efficiency (k cat/K m) of the two mutants was improved 4.08- and 2.84-fold compared to that of the wild type. Such mutants will be instrumental for the structure–function study of the enzyme and for industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wodzinski RJ, Ullah AH (1996) Phytase. Adv Appl Microbiol 42:263–302

    Article  CAS  PubMed  Google Scholar 

  2. Ullah AH, Gibson DM (1987) Extracellular phytase (E.C.3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Prep Biochem 17:63–91

    Article  CAS  PubMed  Google Scholar 

  3. Mitchell DB, Vogel K, Weimann B, Pasamontes L, Loon APGM (1997) The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophola. Microbiology 143:245–252

    Article  CAS  PubMed  Google Scholar 

  4. Oh BC, Choi WC, Park S, Yo Kim, Oh TK (2004) Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biotechnol 63:362–372

    Article  CAS  PubMed  Google Scholar 

  5. Common FH (1989) Biological availability of phosphorus for pigs. Nature 143:370–380

    Google Scholar 

  6. Bakul DM, Sonali PJ, Steven CJ, Pushpalatha PN (2006) Lily pollen alkaline phytase is a histidine phosphatase similar to mammalian multiple inositol polyphosphate phosphatase (MINPP). Phytochemistry 67:1874–1886

    Article  Google Scholar 

  7. Gibson DM, Ullah AH (1988) Purification and characterization of phytase from cotyledons of germinating soybean seeds. Arch Biochem Biophys 260:503–513

    Article  CAS  PubMed  Google Scholar 

  8. Choi YM, Suh HJ, Kim JM (2001) Purification and properties of extracellular phytase from Bacillus sp. KHU-10. J Protein Chem 20:287–292

    Article  CAS  PubMed  Google Scholar 

  9. Kerovuo J, Lauraeus M, Nurminen P, Kalkkinen N, Apajalahti J (1998) Isolation, characterization, molecular genecloning, and sequencing of a novel phytase from Bacillus subtilis. Appl Environ Microbiol 64:2079–2085

    CAS  PubMed  Google Scholar 

  10. Rodriguez E, Han Y, Lei XG (1999) Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochem Biophys Res Commun 257:117–123

    Article  CAS  PubMed  Google Scholar 

  11. Xiong AS, Yao QH (2004) Isolation, characterization, molecular cloning of the cDNA encoding a novel phytase from Aspergillus niger 113 and high expression in Pichia pastoris. BMB Rep 37:282–291

    CAS  Google Scholar 

  12. Wyss M, Pasamontes L, Friedlein A, Remy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M (1999) Biophysical characterization of fungal phytases (myo-inositol hexakis phosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microbiol 65:359–366

    CAS  PubMed  Google Scholar 

  13. Tomschy A, Tessier M (2000) Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Protein Sci 9:1304–1311

    Article  CAS  PubMed  Google Scholar 

  14. Tomschy A, Wyss M, Kostrewa D, Vogel K (2000) Active site residue 297 of Aspergillus niger phytase critically a!ects the catalytic properties. FEBS Lett 472:169–172

    Article  CAS  PubMed  Google Scholar 

  15. Kim T, Mullaney EJ (2006) Shifting the pH profile of Aspergillus niger PhyA phytase to match the stomach pH enhances its effectiveness as an animal feed additive. Appl Environ Microbiol 72:4397–4403

    Article  CAS  PubMed  Google Scholar 

  16. Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, Cheng ZM, Li Y (2006) PCR-based accurate synthesis of long DNA sequences. Nat Protoc 1:791–797

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Zhang WW, Liu JN, Cao YL, Bai XT, Gong YS, Cen PL, Yang MM (2009) An alkali-tolerant xylanase produced by the newly isolated alkaliphilic Bacillus pumilus from paper mill effluent. Mol Biol Rep. doi:10.1007/s11033-009-9915-6

  18. Zhang XX, Wei DS, Li MC, Qi YY, Xing LJ (2009) Evolution-related amino acids play important role in determining regioselectivity of fatty acid desaturase from Pichia pastoris. Mol Biol Rep 36:567–573

    Article  PubMed  Google Scholar 

  19. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

    Article  CAS  PubMed  Google Scholar 

  20. Mullaney EJ, Daly CB (2002) Site-directed mutagenesis of Aspergillus niger NRRL 3135 phytase at residue 300 to enhance catalysis at pH 4.0. Biochem Biophys Res Commun 297:1016–1020

    Article  CAS  PubMed  Google Scholar 

  21. Kim MS, Lei XG (2008) Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR. Appl Microbiol Biotechnol 79:69–75

    Article  CAS  PubMed  Google Scholar 

  22. Kim MS, Jeremy DW, Lei XG (2008) Assembly of mutations for improving thermostability of Escherichia coli AppA2 phytase. Appl Microbiol Biotechnol 79:751–758

    Article  CAS  PubMed  Google Scholar 

  23. Matsumura I, Wallingford JB, Surana NK, Vize PD, Ellington AD (1999) Directed evolution of the surface chemistry of the reporter enzyme beta-glucuronidase. Nat Biotechnol 17:696–701

    Article  CAS  PubMed  Google Scholar 

  24. Flores H, Ellington AD (2002) Increasing the thermal stability of an oligomeric protein, beta-glucuronidase. J Mol Biol 315:325–337

    Article  CAS  PubMed  Google Scholar 

  25. Morley KL, Kazlauskas RJ (2005) Improving enzyme properties: when are closer mutations better. Trends Biotechnol 23:231–237

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The research was supported by International Scientific and Technological Cooperation (08540706500), 863 Program (2008AA10Z401), the Youth Fund of Shanghai Academy of Agricultural Sciences (2008-6, 2009-19) and Shanghai Rising-Star Program (08QH14021).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Sheng Xiong or Quan-Hong Yao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, YS., Peng, RH., Xu, J. et al. Semi-rational site-directed mutagenesis of phyI1s from Aspergillus niger 113 at two residue to improve its phytase activity. Mol Biol Rep 38, 977–982 (2011). https://doi.org/10.1007/s11033-010-0192-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0192-1

Keywords

Navigation