Skip to main content

Advertisement

Log in

Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The NAC family transcription factor has demonstrated its importance in plant development and environmental stress response. Based on the microarray results under salt stress and EST information, the full-length cDNAs of two salt-inducible NAC-family genes (SlNAC1, SlNAM1) were isolated from a salt tolerant tomato cultivar, Edkawi, using Rapid Amplification of cDNA Ends (RACE). SlNAC1 and SlNAM1 encoded 301 and 296 amino acids, respectively, and the deduced protein sequences contained the typical domain of NAC-family transcription factors. Tissue expression profile analysis using semi-quantitative RT-PCR showed that SlNAC1 was expressed mainly in root, flower and green fruit; transcripts of SlNAM1 were detected in all tested tissues except for root, and high-level expression was detected in flower and matured tomato fruit. Both SlNAC1 and SlNAM1 were induced by salt stress in Edkawi, while the expression pattern was different in a salt-sensitive cultivar, ZS-5. Phylogenetic analysis for putative NAC-family peptides available in the tomato genome indicated a wide diversity of this gene family. Results obtained in the present study suggest that both SlNAC1 and SlNAM1 might play important roles in tomato stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ouyang B, Yang T, Li H, Zhang L, Zhang Y, Zhang J, Fei Z, Ye Z (2007) Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. J Exp Bot 58:507–520. doi:10.1093/jxb/erl258

    Article  CAS  PubMed  Google Scholar 

  2. Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857. doi:10.1105/tpc.9.6.841

    Article  CAS  PubMed  Google Scholar 

  3. Ernst HA, Olsen AN, Larsen S (2004) Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep 5:297–303. doi:10.1038/sj.embor.7400093

    Article  CAS  PubMed  Google Scholar 

  4. Sablowski RW, Meyerowitz EM (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92:93–103. doi:10.1016/S0092-8674(00)80902-2

    Article  CAS  PubMed  Google Scholar 

  5. Xie Q, Frugis G, Colgan D, Chua NH (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036. doi:10.1101/gad.852200

    Article  CAS  PubMed  Google Scholar 

  6. Ko JH, Yang SH, Park AH, Lerouxel O, Han KH (2007) ANAC012, a member of the plant-specific NAC transcription factor family, negatively regulates xylary fiber development in Arabidopsis thaliana. Plant J 50:1035–1048. doi:10.1111/j.1365-313X.2007.03109.x

    Article  CAS  PubMed  Google Scholar 

  7. Mao C, Ding W, Wu Y, Yu J, He X, Shou H, Wu P (2007) Overexpression of a NAC-domain protein promotes shoot branching in rice. New Phytol 176:288–298. doi:10.1111/j.1469-8137.2007.02177.x

    Article  CAS  PubMed  Google Scholar 

  8. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF and CUC (NAC) transcription factor enhances drought resistant and salt tolerance in rice. Proc Natl Acad Sci USA 103:12987–12992. doi:10.1073/pnas.0604882103

    Article  CAS  PubMed  Google Scholar 

  9. Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008) Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res 18:756–767. doi:10.1038/cr.2008.53

    Article  CAS  PubMed  Google Scholar 

  10. Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67:169–181. doi:10.1007/s11103-008-9309-5

    Article  CAS  PubMed  Google Scholar 

  11. Yokotani N, Ichikawa T, Kondou Y, Matsui M, Hirochika H, Iwabuchi M, Oda K (2009) Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis. Planta 229:1065–1075. doi:10.1007/s00425-009-0895-5

    Article  CAS  PubMed  Google Scholar 

  12. Collinge M, Boller T (2001) Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol Biol 46:521–529. doi:10.1023/A:1010639225091

    Article  CAS  PubMed  Google Scholar 

  13. Oh SK, Lee S, Yu SH, Choi D (2005) Expression of a novel NAC domain-containing transcription factor (CaNAC1) is preferentially associated with incompatible interactions between chili pepper and pathogens. Planta 222:876–887. doi:10.1007/s00425-005-0030-1

    Article  CAS  PubMed  Google Scholar 

  14. Selth LA, Dogra SC, Rasheed MS, Healy H, Randles JW, Rezaian MA (2005) A NAC domain protein interacts with tomato leaf curl virus replication accessory protein and enhances viral replication. Plant Cell 17:311–325. doi:10.1105/tpc.104.027235

    Article  CAS  PubMed  Google Scholar 

  15. Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209. doi:10.1007/BF02670897

    Article  CAS  Google Scholar 

  16. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914. doi:10.1093/jxb/eri285

    Article  CAS  PubMed  Google Scholar 

  17. Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser D (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031. doi:10.1002/elps.11501401163

    Article  CAS  PubMed  Google Scholar 

  18. Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJ (2008) The 20 years of PROSITE. Nucleic Acids Res 36:D245–D249. doi:10.1093/nar/gkm977

    Article  CAS  PubMed  Google Scholar 

  19. Horton P, Park KJ, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587. doi:10.1093/nar/gkm259

    Article  PubMed  Google Scholar 

  20. John I, Hackett R, Cooper W, Drake R, Farrell A, Grierson D (1997) Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol Biol 33:641–651. doi:10.1023/A:1005746831643

    Article  CAS  PubMed  Google Scholar 

  21. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1007/978-1-4020-6754-9_3188

    Article  CAS  PubMed  Google Scholar 

  22. Kumar S, Nei M, Dudley J, Tamura K (2008) MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306. doi:10.1093/bib/bbn017

    Article  CAS  PubMed  Google Scholar 

  23. Ohnishi T, Sugahara S, Yamada T (2005) OsNAC6, a member of the NAC Gene family, is induced by various stresses in rice. Genes Genet Syst 80:135–139. doi:10.1266/ggs.80.135

    Article  CAS  PubMed  Google Scholar 

  24. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327. doi:10.1093/nar/30.1.325

    Article  CAS  PubMed  Google Scholar 

  25. Hegedus D, Yu M, Baldwin D, Gruber M, Sharpe A, Parkin I, Whitwill S, Lydiate D (2003) Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol Biol 53:383–397. doi:10.1023/B:PLAN.0000006944.61384.11

    Article  CAS  PubMed  Google Scholar 

  26. Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C, Xie Q (2009) Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res 19:1279–1290. doi:10.1038/cr.2009.108

    Article  CAS  PubMed  Google Scholar 

  27. Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P, Hayashizaki Y, Suzuki K, Kojima K, Takahara Y, Yamamoto K, Kikuchi S (2003) Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res 10:239–247. doi:10.1093/dnares/10.6.239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 30400299 and No. 30771461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Ouyang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2010_177_MOESM1_ESM.jpg

Gene structure of SlNAC1 (a) and SlNAM1 (b). Exons are represented as black boxes. Numbers in boxes indicate exon size in base pairs (bp). Introns are shown as lines linking exons and their sizes are shown in base pairs. The start codon is shown as ATG, and stop codon is TAA for SlNAC1 and TGA for SlNAM1. NAC or NAM domain is shown as line or dot line below the exons, and numbers on the left indicate amino acid positions of the protein domains (JPG 550 kb)

(XLS 27 kb)

(XLSX 11 kb)

(XLSX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, R., Deng, C., Ouyang, B. et al. Molecular analysis of two salt-responsive NAC-family genes and their expression analysis in tomato. Mol Biol Rep 38, 857–863 (2011). https://doi.org/10.1007/s11033-010-0177-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0177-0

Keywords

Navigation