Skip to main content

Advertisement

Log in

Cloning and expression analysis of phytoene desaturase and ζ-carotene desaturase genes in Carica papaya

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

An Erratum to this article was published on 24 July 2012

Abstract

The fruit flesh color of papaya is an important nutritional quality trait and is due to the accumulation of carotenoid. To elucidate the carotenoid biosynthesis pathway in Carica papaya, the phytoene desaturase (PDS) and the ζ-carotene desaturase (ZDS) genes were isolated from papaya (named CpPDS and CpZDS) using the rapid amplification of cDNA ends (RACE) approach, and their expression levels were investigated in red- and yellow-fleshed papaya varieties. CpPDS contains a 1749 bp open reading frame coding for 583 amino acids, while CpZDS contains a 1716 bp open reading frame coding for 572 amino acids. The deduced CpPDS and CpZDS proteins contain a conserved dinucleotide-binding site at the N-terminus and a carotenoid-binding domain at the C-terminus. Papaya genome sequence analysis revealed that CpPDS and CpZDS are single copy; the CpPDS was mapped to papaya chromosome LG6, and the CpZDS was mapped to chromosome LG3. Quantitative PCR showed that both CpPDS and CpZDS were expressed in all tissues examined with the highest expression in maturing fruits, and that the expression of CpPDS and CpZDS were higher in red-fleshed fruits than in yellow-fleshed fruits. These results indicated that the differential accumulation of carotenoids in red- and yellow-fleshed papaya varieties might be partly explained by the transcriptional level of CpPDS and CpZDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Armstrong GA (1997) Genetics of eubacterial carotenoid biosynthesis: a colorful tale. Annu Rev Microbiol 51:629–659

    Article  PubMed  CAS  Google Scholar 

  2. Armstrong GA, Hearst JE (1996) Carotenoids 2: genetics and molecular biology of carotenoid pigment biosynthesis. FASEB J 10:228–237

    PubMed  CAS  Google Scholar 

  3. Sieiro C, Poza M, de Miguel T, Villa TG (2003) Genetic basis of microbial carotenogenesis. Int Microbiol 6:11–16

    PubMed  CAS  Google Scholar 

  4. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  5. Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12

    Article  PubMed  CAS  Google Scholar 

  6. Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  7. Olson JA (1989) Provitamin A function of carotenoids: the conversion of beta-carotene into vitamin A. J Nutr 119:105–108

    PubMed  CAS  Google Scholar 

  8. Rao AV, Agarwal S (2000) Role of antioxidant lycopene in cancer and heart disease. J Am Coll Nutr 19:563–569

    PubMed  CAS  Google Scholar 

  9. Cong L, Wang C, Li Z, Chen L, Yang G, Wang Y, He G (2009) cDNA cloning and expression analysis of wheat (Triticum aestivum L.) phytoene and zeta-carotene desaturase genes. Mol Biol Rep. doi:10.1007/s11033-009-9922-7

  10. Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of beta-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  PubMed  CAS  Google Scholar 

  11. Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to beta -carotene formation in plant chromoplasts discovered by map-based cloning of beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  PubMed  CAS  Google Scholar 

  12. Wang X, Cao A, Yu C, Wang D, Chen P (2010) Establishment of an effective virus induced gene silencing system with BSMV in Haynaldia villosa. Mol Biol Rep 37:967–972

    Article  PubMed  Google Scholar 

  13. Chandrika UG, Errol RJ, Wickramasinghe SMDN, Narada DW (2003) Carotenoids in yellow- and red-fleshed papaya (Carica papaya L). J Sci Food Agric 83:1279–1282

    Article  CAS  Google Scholar 

  14. Yamamoto HY (1964) Comparison of the carotenoids in yellow- and red-fleshed carica papaya. Nature 201:1049–1050

    Article  PubMed  CAS  Google Scholar 

  15. Alquezar B, Zacarias L, Rodrigo MJ (2009) Molecular and functional characterization of a novel chromoplast-specific lycopene beta-cyclase from citrus and its relation to lycopene accumulation. J Exp Bot 60:1783–1797

    Article  PubMed  CAS  Google Scholar 

  16. Apel W, Bock R (2009) Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion. Plant Physiol 151:59–66

    Article  PubMed  CAS  Google Scholar 

  17. Clotault J, Peltier D, Berruyer R, Thomas M, Briard M, Geoffriau E (2008) Expression of carotenoid biosynthesis genes during carrot root development. J Exp Bot 59:3563–3573

    Article  PubMed  CAS  Google Scholar 

  18. Fanciullino AL, Dhuique-Mayer C, Luro F, Morillon R, Ollitrault P (2007) Carotenoid biosynthetic pathway in the citrus genus: number of copies and phylogenetic diversity of seven genes. J Agric Food Chem 55:7405–7417

    Article  PubMed  CAS  Google Scholar 

  19. Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M (2004) Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiol 134:824–837

    Article  PubMed  CAS  Google Scholar 

  20. Skelton RL, Yu Q, Srinivasan R, Manshardt R, Moore PH, Ming R (2006) Tissue differential expression of lycopene beta-cyclase gene in papaya. Cell Res 16:731–739

    Article  PubMed  CAS  Google Scholar 

  21. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  23. Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KL et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–996

    Article  PubMed  CAS  Google Scholar 

  24. Chandrika UG, Errol RJ, Wickramasinghe SMDN, Narada DW (2003) Carotenoids in yellow- and red-fleshed papaya (Carica papaya L). J Sci Food Agric 83:1279–1282

    Article  CAS  Google Scholar 

  25. Wikstrom N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc Biol Sci 268:2211–2220

    Article  PubMed  CAS  Google Scholar 

  26. Fanciullino AL, Cercos M, Dhique M, Froelicher Y, Talon M, Ollitrault P, Morillon R (2008) Changes in carotenoid content and biosynthetic gene expression in juice sacs of four orange varieties (Citrus sinensis) differing in flesh fruit color. J Agric Food Chem 56:3628–3638

    Article  PubMed  CAS  Google Scholar 

  27. Lu S, Li L (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol 50:778–785

    Article  PubMed  CAS  Google Scholar 

  28. Lu S, Van Eck J, Zhou X, Lopez AB, O’Halloran DM, Cosman KM, Conlin BJ, Paolillo DJ, Garvin DF, Vrebalov J et al (2006) The cauliflower or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18:3594–3605

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (30760134, 30960218) and the Hainan Province Natural Science Foundation (808186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Zhou.

Additional information

P. Yan and X. Z. Gao contributed equally to this work.

An erratum to this article can be found at http://dx.doi.org/10.1007/s11033-012-1878-3

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 40 kb)

Fig. 1

Phylogenetic analysis of PDS and ZDS proteins. The neighbor-joining method was used to construct the tree. (JPG 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, P., Gao, X.Z., Shen, W.T. et al. Cloning and expression analysis of phytoene desaturase and ζ-carotene desaturase genes in Carica papaya . Mol Biol Rep 38, 785–791 (2011). https://doi.org/10.1007/s11033-010-0167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0167-2

Keywords

Navigation