Skip to main content

Advertisement

Log in

Genetic diversity and molecular differentiation of Chinese toad based on microsatellite markers

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Genetic diversity and population structure of 9 populations of Bufo gargarizans with total 111 samples in China were assessed using seven microsatellite loci. The analysed microsatellite markers produced 161 alleles, varied from 9 to 38 alleles each locus. The number of alleles per population per locus ranged from 4.43 to 10.29. Polymorphic information content showed that all seven loci were highly informative (mean = 0.810 ± 0.071). The average observed heterozygosity was less than the expected (0.353 ± 0.051 and 0.828 ± 0.067, respectively). All tested populations gave significant departures from Hardy–Weinberg equilibrium. Genetic differentiation among the populations was considerably high with the overall and pairwise F ST values (mean = 0.160 ± 0.039), and showed fairly high level of inbreeding (indicated by a mean F IS value of 0.504 ± 0.051) and global heterozygote deficit. In comparison to other amphibian studies; however, our results suggested that the level of genetic structuring in B. gargarizans was relatively low in the geographical scale of the study area. Interestingly, the speculated population bottleneck was found to be absent and the analyses provide only weak evidence for a recent contraction in size even though there was severe inbreeding (indicated by the F IS value) in the Chinese toad populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gonzales Z, Ray DA, McAliley LR et al (2004) Five polymorphic microsatellite markers for the Great Plains toad, Bufo cognatus. Mol Ecol Notes 4:9–10

    Article  Google Scholar 

  2. Blaustein AR, Wake DB (1990) Declining amphibian populations: a global phenomenon? Trends Ecol Evol 5:203

    Article  Google Scholar 

  3. Berger L, Speare R, Daszak P et al (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rainforests of Australia and Central America. Proc Natl Acad Sci USA 95:9031

    Article  CAS  PubMed  Google Scholar 

  4. Lips KR (1999) Mass mortality and population declines of anurans at an upland site in western Panama. Conserv Biol 13:117

    Article  Google Scholar 

  5. Carey C, Heyer RW, Wilkinson J et al (2001) Amphibian declines and environmental change: use of remote-sensing data to identify environmental correlates. Conserv Biol 15:903–913

    Article  Google Scholar 

  6. Alexander AM, Eischeid JK (2000) Climate variability in regions of amphibian declines. Conserv Biol 15:930–942

    Article  Google Scholar 

  7. Jo-Anne Carrier, Beebee TJC (2003) Recent, substantial, and unexplained declines of the common toad Bufo bufo in lowland England. Biol Conserv 111:395–399

    Article  Google Scholar 

  8. Scribner KT, Arntzen JW, Cruddace N, Oldham RS, Burke T (2001) Environmental correlates of toad abundance and population genetic diversity. Biol Conserv 98:201–210

    Article  Google Scholar 

  9. Nyström V, Angerbjörn A, Dalén L (2006) Genetic consequences of a demographic bottleneck in the Scandinavian arctic fox. Oikos 114:84–94

    Article  Google Scholar 

  10. Frankham R (1995) Inbreeding and extinction: a threshold effect. Conserv Biol 9:792–799

    Article  Google Scholar 

  11. Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  12. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241

    Article  Google Scholar 

  13. Macey JR, Shulte IIJA, Larson A et al (1998) Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan Plateau: a case of vicariance and dispersal. Mol Phylogenet Evol 9:80–87

    Article  CAS  PubMed  Google Scholar 

  14. Liu WZ, Lathrop A, Fu JZ, Yang DT, Murphy RW (2000) Phylogeny of East Asian Bufonids inferred from mitochondrial DNA sequences (Anura: Amphibia). Mol Phylogenet Evol 14(3):423–435

    Article  CAS  PubMed  Google Scholar 

  15. Fu JZ, Weadicka CJ, Zeng XM et al (2005) Phylogeographic analysis of the Bufo gargarizans species complex: a revisit. Mol Phylogenet Evol 37(1):202–213

    Article  CAS  PubMed  Google Scholar 

  16. Hu YL, Wu XB, Jiang ZG, Yan P, Su X, Cao SY (2007) Population genetics and phylogeography of Bufo gargarizans in China. Biochem Genet 45:697–711

    Article  CAS  PubMed  Google Scholar 

  17. Weber JL, May PE (1989) Abundant class of human DNA polymorphism which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    CAS  PubMed  Google Scholar 

  18. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  CAS  PubMed  Google Scholar 

  19. Wright JM, Bentzen P (1995) Microsatellites: genetic markers for the future. In: Carvalho GR, Pitcher TJ (eds) Molecular genetics in fisheries. Chapman and Hall, London, pp 117–121

    Google Scholar 

  20. Rowe G, Beebee TJC, Burke T (2000) A microsatellite analysis of natterjack toad, Bufo calamita, metapopulations. Oikos 88:641–651

    Article  Google Scholar 

  21. Burns EL, Eldridge MDB, Houlden BA (2004) Microsatellite variation and population structure in a declining Australian Hylid Litoria aurea. Mol Ecol 13:1745–1757

    Article  CAS  PubMed  Google Scholar 

  22. Kraaijeveld-smit FJL, Beebee TJC, Griffiths RA, Moore RD, Schley L (2005) Low gene flow but high genetic diversity in the threatened Mallorcan midwife toad. Alytes muletensis. Mol Ecol 14:3307–3315

    Article  CAS  PubMed  Google Scholar 

  23. Dirk SS, Merilä Juha (2007) Demographic and genetic estimates of effective population and breeding size in the amphibian Rana temporaria. Conserv Biol 21(1):142–151

    Article  Google Scholar 

  24. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  25. Brede EG, Rowe G, Trojanowski J, Beebee TJC (2001) Polymerase chain reaction primers for microsatellite loci in the common toad Bufo bufo. Mol Ecol Notes 1:308–310

    Article  CAS  Google Scholar 

  26. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html

  27. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655

    Article  CAS  PubMed  Google Scholar 

  28. Raymond M and Rousset F (2003) GENEPOP (version 3.4) http://www.wbiomed.edu.au/genepop/. Updated from Raymond M and Rousset F, 1995 GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

  29. Rice WR (1989) Analyzing tables of statistical tests. Evolution Int J org Evolution 43:223–225

    Google Scholar 

  30. Wright S (1969) Evolution and the genetics of populations, vol 2. The Theory of Gene Frequencies. University of Chicago Press, Chicago

    Google Scholar 

  31. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution Int J org Evolution 38:1358–1370

    Google Scholar 

  32. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  Google Scholar 

  33. Goodman SJ (1997) RST CALC: a collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Mol Ecol 6:881–885

    Article  CAS  Google Scholar 

  34. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  35. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer programme for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  36. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    Article  CAS  PubMed  Google Scholar 

  37. Newman RA, Squire T (2001) Microsatellite variation and fine scale population structure in the wood frog (Rana sylavatica). Mol Ecol 10:1087–1100

    Article  CAS  PubMed  Google Scholar 

  38. Pemberton JM, Slate J, Bancroft DR et al (1995) Non amplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–252

    Article  CAS  PubMed  Google Scholar 

  39. Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc R Soc Lond B Biol Sci 271:1293–1302

    Article  Google Scholar 

  40. Scribner KT, Arntzen JW, Burke T (1994) Comparative analysis of intra- and interpopulation genetic diversity in Bufo bufo, using allozyme, single-locus microsatellite, minisatellite, and multilocus minisatellite data. Mol Biol Evol 11:737–748

    CAS  PubMed  Google Scholar 

  41. Palo JU, O’Hara RB, Laugen AT, Laurila A, Primmers CP, Merila J (2003) Latitudinal divergence of common frog (Rana temporaria) life history traits by natural selection: evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12:1963–1978

    Article  CAS  PubMed  Google Scholar 

  42. Shaffer HB, Fellers GM, Magee A, Voss SR (2000) The genetics of amphibian declines: population substructure and molecular differentiation in the Yosemite toad, Bufo canorus (Anura Bufonidae) based on single-strand conformation polymorphism analysis (SSCP) and mitochondrial DNA sequence data. Mol Ecol 9:245–257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following individuals and institutions for generously providing us with samples: Dao-De Yang, Central South Forestry University; Bing-Wan Liu, Northeast Forestry University; Bao-Rong Geng, Fujian Normal University; Jian-Ping Jiang, Chengdu Institute of Biology, Chinese Academy of Sciences; Hong-Ying Sun, Nanjing Normal University; Yun-Zhi Yan and Qian Wang, Anhui Normal University. This work was financially supported by National Natural Science Foundation of China, the Foundation for Excellent Youth in Anhui Province and Key Laboratory of Biotic Environment and Ecological safety in Anhui Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Bing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, XB., Hu, YL. Genetic diversity and molecular differentiation of Chinese toad based on microsatellite markers. Mol Biol Rep 37, 2379–2386 (2010). https://doi.org/10.1007/s11033-009-9745-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9745-6

Keywords

Navigation