Skip to main content
Log in

Molecular cloning and characterization of four heat shock protein genes from Macrocentrus cingulum (Hymenoptera: Braconidae)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The full-length cDNA sequences of four HSPs genes were amplified from Macrocentrus cingulum, respectively named Mchsp90, Mchsc70, Mchsp70 and Mchsp23.8. These four genes were submitted to GenBank database and assigned to GenBank accession number: EU570065, EU585780, EU585779 and EU624206. Phylogenetic analysis indicated that the Mchsp90, Mchsc70 and Mchsp70 were located in cytoplasm. Moreover, the Mchsc70 was a member of heat shock cognate protein 70 while the Mchsp70 was a member of heat shock inducible 70. The expression analysis indicated that these four genes were differentially expressed at larval, pupal and adult stages. Under normal conditions, the mRNA levels of Mchsp90 and Mchsc70 were higher than Mchsp70 while Mchsp23.8 was decreased during aging. The mRNA levels of these four genes could be up-regulated by heat shock besides Mchsp70 and Mchsp23.8 could be increased more dramatically than Mchsp90 and Mchsc70. These results suggested that Mchsp90, Mchsp70 and Mchsp23.8 might have dual functions under normal and heat shock conditions while Mchsp70 and Mchsp23.8 might supply more important protection under heat shock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boorstein WR, Ziegelhoffer T, Craig EA (1994) Molecular evolution of the HSP70 multigene family. J Mol Evol 38:1–17

    Article  CAS  PubMed  Google Scholar 

  2. Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    Article  CAS  PubMed  Google Scholar 

  3. Camargo LS, Viana JH, Ramos AA, Serapiao RV, de Sa WF, Ferreira AM, Guimaraes MF, do Vale FVR (2007) Developmental competence and expression of the Hsp 70.1 gene in oocytes obtained from Bos indicus and Bos taurus dairy cows in a tropical environment. Theriogenology 68:626–632

    Article  CAS  PubMed  Google Scholar 

  4. Cobreros L, Fernandez MA, Luque CM, Gonzalez RA, Martin BMD (2008) A role for the chaperone Hsp70 in the regulation of border cell migration in the Drosophila ovary. Mech Dev 125:1048–1058

    Article  CAS  PubMed  Google Scholar 

  5. Tuttle AM, Gauley J, Chan N, Heikkila JJ (2007) Analysis of the expression and function of the small heat shock protein gene, hsp27, in Xenopus laevis embryos. Comp Biochem Physiol A Mol Integr Physiol 147:112–121

    Article  PubMed  Google Scholar 

  6. Li AQ, Popova BA, Dean DH, Denlinger DL (2007) Proteomics of the flesh fly brain reveals an abundance of upregulated heat shock proteins during pupal diapause. J Insect Physiol 53:385–391

    Article  CAS  PubMed  Google Scholar 

  7. Podrabsky JE, Somero GN (2007) An inducible 70 kDa-class heat shock protein is constitutively expressed during early development and diapause in the annual killifish, Austrofundulus limnaeus. Cell Stress Chaperones 12:199–204

    Article  CAS  PubMed  Google Scholar 

  8. Rinehart JP, Li A, Yocum GD, Robich RM, Hayward SA, Denlinger DL (2007) Up-regulation of heat shock proteins is essential for cold survival during insect diapause. Proc Natl Acad Sci USA 104:11130–11137

    Article  CAS  PubMed  Google Scholar 

  9. Gunter HM, Degnan BM (2007) Developmental expression of Hsp90, Hsp70 and HSF during morphogenesis in the vetigastropod Haliotis asinine. Dev Genes Evol 217:603–612

    Article  CAS  PubMed  Google Scholar 

  10. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  CAS  PubMed  Google Scholar 

  11. Qin W, Tyshenko MG, Wu BS, Walker VK, Robertson RM (2003) Cloning and characterization of a member of the Hsp70 gene family from Locusta migratoria, a highly thermotolerant insect. Cell Stress Chaperones 8:144–152

    Article  CAS  PubMed  Google Scholar 

  12. Sugiyama Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, Tsui SK, Yoshida S, Ohno S (2000) Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J Biol Chem 275:1095–1104

    Article  CAS  PubMed  Google Scholar 

  13. Karlin S, Brocchieri L (1998) Heat shock protein 70 family: multiple sequence comparisons, function, and evolution. J Mol Evol 47:565–577

    Article  CAS  PubMed  Google Scholar 

  14. Nikolaidis N, Nei M (2004) Concerted and nonconcerted evolution of the Hsp70 gene superfamily in two sibling species of nematodes. Mol Biol Evol 21:498–505

    Article  CAS  PubMed  Google Scholar 

  15. Renner T, Waters ER (2007) Comparative genomic analysis of the Hsp70s from five diverse photosynthetic eukaryotes. Cell Stress Chaperones 12:172–185

    Article  CAS  PubMed  Google Scholar 

  16. Kiang JG, Tsokos GC (1998) Heat shock protein 70 kDa: molecular biology, biochemistry and physiology. Pharmacol Ther 80:183–201

    Article  CAS  PubMed  Google Scholar 

  17. Mahroof R, Zhu KY, Neven L, Subramanyam B, Bai J (2005) Expression patterns of three heat shock protein 70 genes among developmental stages of the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comp Biochem Physiol A Mol Integr Physiol 141:247–256

    Article  PubMed  Google Scholar 

  18. Edwards OR, Hopper KR (1999) Using superparasitism by a stem borer parasitoid to infer a host refuge. Ecol Entomol 24:7–12

    Article  Google Scholar 

  19. Hu J, Zhu XX, Fu WJ (2003) Passive evasion of encapsulation in Macrocentrus cingulum Brischke (Hymenoptera: Braconidae), a polyembryonic parasitoid of Ostrinia furnacalis Guenee (Lepidoptera: Pyralidae). J Insect Physiol 49:367–375

    Article  CAS  PubMed  Google Scholar 

  20. Owusu FM, Hargreaves JA (2000) Incidence of conjoined twins in tilapia after thermal shock induction of polyploidy. Aquac Res 31:421–426

    Article  Google Scholar 

  21. Sander K (1976) Specification of the basic body pattern in insect embryogenesis. Adv Insect Physiol 12:125–238

    Article  Google Scholar 

  22. Sander K (1984) Embryonic pattern formation in insects. In: Malacinski GM, Bryant SV (eds) Pattern formation a primer in developmental biology. McMillan, USA, pp 245–268

    Google Scholar 

  23. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  Google Scholar 

  24. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  25. Reineke A (2005) Identification and expression of a small heat shock protein in two lines of the endoparasitic wasp Venturia canescens. Comp Biochem Physiol A Mol Integr Physiol 141:60–69

    Article  CAS  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  27. Chen B, Piel WH, Gui L, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637

    Article  CAS  PubMed  Google Scholar 

  28. Demand J, Luders J, Hohfeld J (1998) The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol Cell Biol 18:2023–2028

    CAS  PubMed  Google Scholar 

  29. Hickey E, Brandon SE, Smale G, Lloyd D, Weber LA (1989) Sequence and regulation of a gene encoding a human 89-kilodalton heat shock protein. Mol Cell Biol 9:2615–2626

    CAS  PubMed  Google Scholar 

  30. Knowlton AA, Salfity M (1996) Nuclear localization and the heat shock proteins. J Biosci 21:123–132

    Article  CAS  Google Scholar 

  31. Theodoraki MA, Mintzas AC (2006) cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata. Insect Mol Biol 15:839–852

    Article  PubMed  Google Scholar 

  32. Young JC, Moarefi I, Hartl FU (2001) Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267–273

    Article  CAS  PubMed  Google Scholar 

  33. Gupta RS (1995) Phylogenetic analysis of the 90 kD heat shock family of protein sequences and an examination of the relationship among animals, plants, and fungi species. Mol Biol Evol 12:1063–1073

    CAS  PubMed  Google Scholar 

  34. Millson SH, Truman AW, Racz A, Hu B, Panaretou B, Nuttall J, Mollapour M, Soti C, Piper PW (2007) Expressed as the sole Hsp90 of yeast, the alpha and beta isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90beta generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J 274:4453–4463

    Article  CAS  PubMed  Google Scholar 

  35. Benedict MQ, Levine BJ, Ke ZX, Cockburn AF, Seawright JA (1996) Precise limitation of concerted evolution to ORFs in mosquito Hsp82 genes. Insect Mol Biol 5:73–79

    Article  CAS  PubMed  Google Scholar 

  36. Landais I, Pommet J, Mita K, Nohata J, Gimenez S, Fournier P, Devauchelle G, Duonor CM, Ogliastro M (2001) Characterization of the cDNA encoding the 90 kDa heat-shock protein in the Lepidoptera Bombyx mori and Spodoptera frugiperda. Gene 271:223–231

    Article  CAS  PubMed  Google Scholar 

  37. Sonoda S, Ashfaq M, Tsumuki H (2006) Cloning and nucleotide sequencing of three heat shock protein genes (hsp90, hsc70, and hsp19.5) from the diamondback moth, Plutella xylostella (L.) and their expression in relation to developmental stage and temperature. Arch Insect Biochem Physiol 62:80–90

    Article  CAS  PubMed  Google Scholar 

  38. Wang HS, Wang XH, Zhou CS, Huang LH, Zhang SF, Guo W, Kang L (2007) cDNA cloning of heat shock proteins and their expression in the two phases of the migratory locust. Insect Mol Biol 16:207–219

    Article  PubMed  Google Scholar 

  39. Lo WY, Liu KF, Liao IC, Song YL (2004) Cloning and molecular characterization of heat shock cognate 70 from tiger shrimp (Penaeus monodon). Cell Stress Chaperones 9:332–343

    Article  CAS  PubMed  Google Scholar 

  40. Rinehart JP, Yocum GD, Denlinger DL (2000) Developmental upregulation of inducible hsp70 transcripts, but not the cognate form, during pupal diapause in the flesh fly, Ssarcophaga crassipalpis. Insect Biochem Mol Biol 30:515–521

    Article  CAS  PubMed  Google Scholar 

  41. Wu R, Sun L, Lei M, Xie ST (2008) Molecular identification and expression of heat shock cognate 70 (HSC70) in the Pacific white shrimp Litopenaeus vannamei. Mol Biol 42:265–274

    CAS  Google Scholar 

  42. Mao L, Shelden EA (2006) Developmentally regulated gene expression of the small heat shock protein Hsp27 in zebrafish embryos. Gene Expr Patterns 6:127–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (NSFC grant no. 30770302, 30570970), partially by Program of Ministry of Science and Technology of the Republic of China (2006FY110500), and by National Science Fund for Fostering Talents in Basic Research (Special subjects in animal taxonomy, NSFC-J0630964/J0109). We would like to thank Professor Wenqing Zhang and Dr. Jian Hu (Sun Yat-sen University, Guangzhou, China) for providing materials. We also thank Dr. Wen Xin and TransGen Biotech Company (Beijing) for providing reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawei Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, P., Xiao, J., Liu, L. et al. Molecular cloning and characterization of four heat shock protein genes from Macrocentrus cingulum (Hymenoptera: Braconidae). Mol Biol Rep 37, 2265–2272 (2010). https://doi.org/10.1007/s11033-009-9715-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9715-z

Keywords

Navigation