Skip to main content

Advertisement

Log in

Partial molecular characterization, expression pattern, polymorphism and association analysis of porcine SKP2 gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As a component of E3 ubiquitin protein ligases called SCFs, SKP2 protein belongs to a member of FBLs protein which is the biggest eukaryotic subfamily of F-BOX proteins with 12 members. In this study, we cloned and sequenced partial cDNA, intron 1 and intron 6 of porcine SKP2 gene. The partial cDNA is 1,402 bp long and has an open reading frame of 1,272 bp which encodes 424 putative amino acids. The deduced protein comprises a conserved F-BOX domain at position from the 90th to 140th amino acid. The phylogenetic tree indicated that porcine SKP2 has the closest genetic relationship with bovine SKP2 than other selected animal species. Quantitative RT-PCR analysis displayed that the tissue expression level of porcine SKP2 fluctuated remarkably in a large range, and it expressed in thymus with the highest level and in longissimus dorsi muscle with the lowest level. Two SNPs were identified, meanwhile, further polymorphism analysis with Cfr42I showed that AA genotype was in dominance absolutely among four kinds of unrelated Chinese indigenous miniature and one introduced Landrace pig breeds. In addition, association analysis with immune traits and blood parameters revealed that the SNP Cfr42I in intron 1 was significantly associated with red cell distribution width of neonate piglets at 0 day (P = 0.027).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weissman AM (1997) Regulating protein degradation by ubiquitination. Immunol Today 18:189–198. doi:10.1016/S0167-5699(97)84666-X

    Article  CAS  PubMed  Google Scholar 

  2. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479. doi:10.1146/annurev.biochem.67.1.425

    Article  CAS  PubMed  Google Scholar 

  3. Bai C, Sen P, Mathias N, Hofmann K, Ma L, Goebl M, Harper JW, Elledge SJ (1996) SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-BOX. Cell 86:263–274. doi:10.1016/S0092-8674(00)80098-7

    Article  CAS  PubMed  Google Scholar 

  4. Skowyra D, Craig KL, Tyers M, Elledge SJ, Wade Harper J (1997) F-Box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–219. doi:10.1016/S0092-8674(00)80403-1

    Article  CAS  PubMed  Google Scholar 

  5. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–230. doi:10.1016/S0092-8674(00)80404-3

    Article  CAS  PubMed  Google Scholar 

  6. Winston JT, Koepp DM, Zhu C, Elledge SJ, Wade Harper J (1999) A family of mammalian F-BOX proteins. Curr Biol 9:1180–1182. doi:10.1016/S0960-9822(00)80021-4

    Article  CAS  PubMed  Google Scholar 

  7. Cenciarelli C, Chiaur DS, Guardavaccaro D, Parks W, Vidal M, Pagano M (1999) Identification of a family of human F-BOX proteins. Curr Biol 9:1177–1179. doi:10.1016/S0960-9822(00)80020-2

    Article  CAS  PubMed  Google Scholar 

  8. Bloom Joanna, Pagano Michele (2003) Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 13:41–47. doi:10.1016/S1044-579X(02)00098-6

    Article  CAS  PubMed  Google Scholar 

  9. Tsvetkov LM, Yeh K-H, Lee S-J, Sun H, Zhang H (1999) P27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr Biol 9:661–666. doi:10.1016/S0960-9822(99)80290-5

    Article  CAS  PubMed  Google Scholar 

  10. Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S, Kitagawa M, Shun-ichiro I, Natsume T, Nakayama KI (2004) Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell 6:661–672. doi:10.1016/S1534-5807(04)00131-5

    Article  CAS  PubMed  Google Scholar 

  11. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C, Hydbring P, Weidung I, Nakayama K, Nakayama KI, Söderberg O, Kerppola TK, Larsson L-G (2003) The F-Box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 11:1189–1200. doi:10.1016/S1097-2765(03)00193-X

    Article  PubMed  Google Scholar 

  12. Zhao D, Gaixia Z, Dongmei Y, Xin Z, Ya G (2008) Molecular mechanism of Skp2 in promoting cervical cancer HeLa cell proliferation. J Med Coll PLA 23:199–208. doi:10.1016/S1000-1948(08)60043-X

    Article  Google Scholar 

  13. Cardozo T, Pagano M (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5:739–751. doi:10.1038/nrm1471

    Article  CAS  PubMed  Google Scholar 

  14. Glickman MH, Ciechanover A (2002) The ubiquitinproteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428

    CAS  PubMed  Google Scholar 

  15. Scheffner M, Huibregtse JM, Vierstra RD, Howley PM (1993) The HPV-16 E6 and E6-AP complex functions as an ubiquitin-protein ligase in the ubiquitination of p53. Cell 75:495–505. doi:10.1016/0092-8674(93)90384-3

    Article  CAS  PubMed  Google Scholar 

  16. Harty RN, Brown ME, McGettigan JP, Wang G, Jayakar HR, Huibregtse JM, Whitt MA, Schnell MJ (2001) Rhabdoviruses and the cellular ubiquitin-proteasome system: a budding interaction. J Virol 75:10623–10629. doi:10.1128/JVI.75.22.10623-10629.2001

    Article  CAS  PubMed  Google Scholar 

  17. Winberg G, Matskova L, Chen F, Plant P, Rotin D, Gish G, Ingham R, Ernberg I, Pawson T (2000) Latent membrane protein 2A of Epstein-Barr virus binds WW domain E3 protein-ubiquitin ligases that ubiquitinate B-cell tyrosine kinases. Mol Cell Biol 20:8526–8535. doi:10.1128/MCB.20.22.8526-8535.2000

    Article  CAS  PubMed  Google Scholar 

  18. Coscoy L, Sanchez DJ, Ganem D (2001) A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J Cell Biol 155:1265–1273. doi:10.1083/jcb.200111010

    Article  CAS  PubMed  Google Scholar 

  19. Bour S, Perrin C, Akari H, Strebel K (2001) The human immunodeficiency virus type I Vpu protein inhibits NF-jB activation by interfering with bTrCP-mediated degradation of IjB. J Biol Chem 276:15920–15928. doi:10.1074/jbc.M010533200

    Article  CAS  PubMed  Google Scholar 

  20. Kalra N, Kumar V (2006) The X protein of hepatitis B virus binds to the F-BOX protein Skp2 and inhibits the ubiquitination and proteasomal degradation of c-Myc. FEBS Lett 580:431–436. doi:10.1016/j.febslet.2005.12.034

    Article  CAS  PubMed  Google Scholar 

  21. Kumar V, Sarkar DP (2004) Hepatitis B virus X protein: structure-function relationships and role in viral pathogenesis. In: Triezenberg SJ, Kaufman J, Gossen M (eds) Handbook of Experimental Pharmacology. Springer-Verlag, Berlin, pp 377–407

    Google Scholar 

  22. Nakayama KI, Nakayama K (2005) Regulation of the cell cycle by SCF-type ubiquitin ligases. Semin Cell Dev Biol 16:323–333. doi:10.1016/j.semcdb.2005.02.010

    Article  CAS  PubMed  Google Scholar 

  23. Wu X, Yu M, Liu B, Yerle M, Zhao SH, Wang YF, Fan B, Li K (2004) Mapping of three porcine 20S proteasome genes using the IMpRH panel. Cytogenet Genome Res 106:142. doi:10.1159/000078566

    Article  CAS  PubMed  Google Scholar 

  24. Wang HL, Zhu ZM, Wang H, Yang SL, Zhao SH, Li K (2006) Molecular characterization and association analysis of porcine CA3. Cytogenet Genome Res 115:129–133. doi:10.1159/000095232

    Article  CAS  PubMed  Google Scholar 

  25. Wang H, Wang H, Zhu Z, Yang S, Feng S, Li K (2007) Characterization of porcine EPLIN gene revealed distinct expression patterns for the two isoforms. Anim Biotechnol 18:101–108. doi:10.1080/10495390600864660

    Article  CAS  PubMed  Google Scholar 

  26. Shan TL, Li K, Tang ZL, Yang SL, Ma YH, Guan WJ, Guo DZ (2008) Full-length coding sequences, polymorphism and chromosomal localizations of the porcine EDG4 and EDG7 genes. Mol Biol Rep 36:751–756. doi:10.1007/s11033-008-9239-y

    Article  PubMed  Google Scholar 

  27. Ma G, Huang J, Sun N, Liu X, Zhu M, Wu Z, Zhao S (2008) Molecular characterization of the porcine GBP1 and GBP2 genes. Mol Immunol 45:2797–2807. doi:10.1016/j.molimm.2008.02.007

    Article  CAS  PubMed  Google Scholar 

  28. Cavaliere TerriA, MS RNC, NP N (2004) Clinical practice red blood cell indices: implications for practice. Newborn Infant Nurs Rev 4:231–239. doi:10.1053/j.nainr.2004.09.006

    Article  Google Scholar 

  29. Hadler MCCM, Colugnati FAB, Sigulem DM (2004) Risks of anemia in infants according to dietary iron density and weight gain rate. Prev Med 39:713–721. doi:10.1016/j.ypmed.2004.02.040

    Article  PubMed  Google Scholar 

  30. Blomberg DJ, Guth JL, Fattu JM, Patrick EA (1986) Evaluation of a new classification system for anemias using consult learning system. Comput Methods Programs Biomed 22:119–125. doi:10.1016/0169-2607(86)90101-X

    Article  CAS  PubMed  Google Scholar 

  31. Evans TC, Jehle D (1991) The red blood cell distribution width. J Emerg Med 9:71–74. doi:10.1016/0736-4679(91)90592-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National 973 Program (2006CB102105), National 863 Project (20060110Z1039), National Natural Science Foundation of China, the Key Project of National Natural Science Foundation of China (30830080), State Platform of Technology Infrastructure (2005DK21101), National Support Plan of China and Innovation Group Foundation of CAAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. M. Peng or K. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Yang, S.L., Tang, Z.L. et al. Partial molecular characterization, expression pattern, polymorphism and association analysis of porcine SKP2 gene. Mol Biol Rep 37, 1309–1317 (2010). https://doi.org/10.1007/s11033-009-9506-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9506-6

Keywords

Navigation