Skip to main content
Log in

Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The regulation of seed oil synthesis in rapeseed is largely unknown. In this study, Arabidopsis microarray was used to analyze the gene differential expression of the immature seeds 30 days after flowering of a high oil Brassica napus, H105, whose oil content was 46.04 ± 1.42, 53.94 ± 1.35 and 53.09 ± 1.35% when planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m), respectively. Transcript levels of 363 genes and 421 genes were altered twofold or more for H105 planted in Xining and Lhasa compared to that in Nanjing, respectively. Together, there were 53 common up-regulated and 42 common down-regulated expression transcripts shared by H105 planted in Xining and Lhasa compared to that in Nanjing. Some important genes, such as sucrose synthase, pyruvate kinase and 6-phosphogluconate dehydrogenase which related to sugar metabolism were identified common up-regulated in higher oil content H105. These results revealed the expressional disciplinarian of correlative genes, and provided important information of the molecular genetic mechanism of oil content difference of rapeseed. In addition, these differential expression genes could be suitable as targets for genetic improvement of seed oil content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Grami B, Stefansson BR (1977) Gene action for protein and oil content in summer rape. Can J Plant Sci 57:625–631

    Article  CAS  Google Scholar 

  2. Zhao J, Becker HC, Zhang D et al (2005) Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions. Crop Sci 45:51–59

    CAS  Google Scholar 

  3. Si P, Mailer RJ, Galwey N et al (2003) Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia. Aust J Agric Res 54:397–407. doi:10.1071/AR01203

    Article  Google Scholar 

  4. Burns MJ, Barnes SR, Bowman JG et al (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition. Heredity 90:39–48. doi:10.1038/sj.hdy.6800176

    Article  CAS  PubMed  Google Scholar 

  5. Zhao J, Becker HC, Zhang D et al (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38. doi:10.1007/s00122-006-0267-5

    Article  CAS  PubMed  Google Scholar 

  6. Delourme R, Falentin C, Huteau V et al (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345. doi:10.1007/s00122-006-0386-z

    Article  CAS  PubMed  Google Scholar 

  7. Hennig L, Menges M, Murray JA et al (2003) Arabidopsis transcript profiling on Affymetrix GeneChip arrays. Plant Mol Biol 53:457–465. doi:10.1023/B:PLAN.0000019069.23317.97

    Article  CAS  PubMed  Google Scholar 

  8. Jiao Y, Ma L, Strickland E et al (2005) Conservation and divergence of light-regulated genome expression patterns during seedling development in rice and Arabidopsis. Plant Cell 17:3239–3256. doi:10.1105/tpc.105.035840

    Article  CAS  PubMed  Google Scholar 

  9. Price J, Laxmi A, StMartin SK et al (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150. doi:10.1105/tpc.104.022616

    Article  CAS  PubMed  Google Scholar 

  10. Puthoff DP, Nettleton D, Rodermel SR et al (2003) Arabidopsis gene expression changes during cyst nematode parasitism revealed by statistical analyses of microarray expression profiles. Plant J 33:911–921. doi:10.1046/j.1365-313X.2003.01677.x

    Article  CAS  PubMed  Google Scholar 

  11. Lai Z, Gross BL, Zou Y et al (2006) Microarray analysis reveals differential gene expression in hybrid sunflower species. Mol Ecol 15:1213–1227. doi:10.1111/j.1365-294X.2006.02775.x

    Article  CAS  PubMed  Google Scholar 

  12. Kawaura K, Mochida K, Yamazaki Y et al (2006) Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray. Funct Integr Genomics 6:132–142. doi:10.1007/s10142-005-0010-3

    Article  CAS  PubMed  Google Scholar 

  13. Yamakawa H, Hirose T, Kuroda M et al (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277. doi:10.1104/pp.107.098665

    Article  CAS  PubMed  Google Scholar 

  14. Ruuska SA, Girke T, Benning C et al (2002) Contrapuntal networks of gene expression during Arabidopsis seed filling. Plant Cell 14:1191–1206. doi:10.1105/tpc.000877

    Article  CAS  PubMed  Google Scholar 

  15. León AJ, Andrade FH, Lee M (2003) Genetic analysis seed-oil concentration across generations and environments in sunflower. Crop Sci 43:135–140

    Google Scholar 

  16. Al-Chaarani GR, Gentzbittel L, Huang XQ et al (2004) Genotypic variation and identification of QTLs for agronomic traits, using AFLP and SSR markers in RILs of sunflower (Helianthus annuus L.). Theor Appl Genet 109:1353–1360. doi:10.1007/s00122-004-1770-1

    Article  PubMed  Google Scholar 

  17. Hyten DL, Pantalone VR, Sams CE et al (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109:552–561. doi:10.1007/s00122-004-1661-5

    Article  CAS  PubMed  Google Scholar 

  18. Song XF, Song TM, Dai JR et al (2004) QTL mapping of kernel oil concentration with high-oil maize by SSR markers. Maydica 49:41–48

    Google Scholar 

  19. Snape JW, Wright AJ, Simpson E (1984) Methods for estimating gene numbers for quantitative characters using doubled haploid lines. Theor Appl Genet 67:143–148. doi:10.1007/BF00317020

    Article  Google Scholar 

  20. Yang YW, Lai KN, Tai PY et al (1999) Molecular phylogenetic studies of Brassica, rorippa, Arabidopsis and allied genera based on the internal transcribed spacer region of 18S–25S rDNA. Mol Phylogenet Evol 13:455–462. doi:10.1006/mpev.1999.0648

    Article  CAS  PubMed  Google Scholar 

  21. Girke T, Todd J, Ruuska S et al (2000) Microarray analysis of developing Arabidopsis seeds. Plant Physiol 124:1570–1581. doi:10.1104/pp.124.4.1570

    Article  CAS  PubMed  Google Scholar 

  22. Liu R, Zhao J, Xiao Y et al (2005) Identification of prior candidate genes for Sclerotinia local resistance in Brassica napus using Arabidopsis cDNA microarray and BrassicaArabidopsis comparative mapping. Sci China C Life Sci 48:460–470. doi:10.1360/02YC0106

    Article  CAS  PubMed  Google Scholar 

  23. Carlsson J, Lagercrantz U, Sundstrom J et al (2007) Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. Plant J 49:452–462. doi:10.1111/j.1365-313X.2006.02975.x

    Article  CAS  PubMed  Google Scholar 

  24. Kang J, Zhang G, Bonnema G et al (2008) Global analysis of gene expression in flower buds of Ms-cd1 Brassica oleracea conferring male sterility by using an Arabidopsis microarray. Plant Mol Biol 66:177–192. doi:10.1007/s11103-007-9261-9

    Article  CAS  PubMed  Google Scholar 

  25. Ge CF (1987) The environment modification of sunflower oil. Liaoning Agric Sci 5:22–24

    Google Scholar 

  26. Wang PD, Yang XY, Bai DM (2002) The relationship between oil content of oil sunflower hybrids and their growing geographical positions. Chin J Oil Crop Sci 24:38–42

    Google Scholar 

  27. Luan YF, Hu SY, Wang JL (2002) Research and use of characteristics of resources of Tibet’s rape seed. Tibet’s Sci Tech 24:24–27

    Google Scholar 

  28. Chen YP, Liu HL (1995) Studies on the relationship between oil content and the change of biological metabolism in Brassica napus L. seed. J Wuhan Bot Res 13:240–246

    Google Scholar 

  29. Beisson F, Koo AJ, Ruuska S et al (2003) Arabidopsis genes involved in acyl lipid metabolism. A census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697. doi:10.1104/pp.103.022988

    Article  CAS  PubMed  Google Scholar 

  30. Verwoert II, van der Linden KH, Nijkamp HJ et al (1994) Developmental specific expression and organelle targeting of the Escherichia coli fabD gene, encoding malonyl coenzyme A-acyl carrier protein transacylase in transgenic rape and tobacco seeds. Plant Mol Biol 26:189–202. doi:10.1007/BF00039531

    Article  CAS  PubMed  Google Scholar 

  31. Roesler K, Shintani D, Savage L et al (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol 113:75–81. doi:10.1104/pp.113.1.75

    Article  CAS  PubMed  Google Scholar 

  32. Zou J, Katavic V, Giblin EM et al (1997) Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene. Plant Cell 9:909–923. doi:10.1105/tpc.9.6.909

    Article  CAS  PubMed  Google Scholar 

  33. Jako C, Kumar A, Wei Y et al (2001) Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiol 126:861–874. doi:10.1104/pp.126.2.861

    Article  CAS  PubMed  Google Scholar 

  34. Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182–196. doi:10.1016/S0163-7827(01)00023-6

    Article  CAS  PubMed  Google Scholar 

  35. Ruuska SA, Schwender J, Ohlrogge JB (2004) The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes. Plant Physiol 136:2700–2709. doi:10.1104/pp.104.047977

    Article  CAS  PubMed  Google Scholar 

  36. Goffman FD, Alonso AP, Schwender J et al (2005) Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiol 138:2269–2279. doi:10.1104/pp.105.063628

    Article  CAS  PubMed  Google Scholar 

  37. Xu XM, Mϕlller SG (2004) AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc Natl Acad Sci USA 101:9143–9148. doi:10.1073/pnas.0400799101

    Article  CAS  PubMed  Google Scholar 

  38. Wu Y, HB H, Liu R (2007) Analysis of ATP binding cassette A1 gene R219K polymorphism in patients with endogenous hypertriglyceridemia in Chinese population. Chin J Med Genet 24:177–181

    Google Scholar 

  39. King SP, Lunn JE, Furbank RT (1997) Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiol 114:153–160

    CAS  PubMed  Google Scholar 

  40. Li RJ, Wang HZ, Mao H et al (2006) Identification of differentially expressed genes in seeds of two near-isogenic Brassica napus lines with different oil content. Planta 224:952–962. doi:10.1007/s00425-006-0266-4

    Article  CAS  PubMed  Google Scholar 

  41. Rangasamy D, Ratledge C (2000) Genetic enhancement of fatty acid synthesis by targeting rat liver ATP: citrate lyase into plastids of tobacco. Plant Physiol 122:1231–1238. doi:10.1104/pp.122.4.1231

    Article  CAS  PubMed  Google Scholar 

  42. Sangwan RS, Gauthier DA, Turpin DH et al (1992) Pyruvate-kinase isoenzymes from zygotic and microspore-derived embryos of Brassica napus. Planta 187:198–202. doi:10.1007/BF00201938

    Article  CAS  Google Scholar 

  43. Andre C, Froehlich JE, Moll MR et al (2007) A heteromeric plastidic pyruvate kinase complex involved in seed oil biosynthesis in Arabidopsis. Plant Cell 19:2006–2022. doi:10.1105/tpc.106.048629

    Article  CAS  PubMed  Google Scholar 

  44. Plaxton WC, Smith CR, Knowles VL (2002) Molecular and regulatory properties of leucoplast pyruvate kinase from Brassica napus (rapeseed) suspension cells. Arch Biochem Biophys 400:54–62. doi:10.1006/abbi.2002.2782

    Article  CAS  PubMed  Google Scholar 

  45. Hutchings D, Rawsthorne S, Emes MJ (2005) Fatty acid synthesis and the oxidative pentose phosphate pathway in developing embryos of oilseed rape (Brassica napus L.). J Exp Bot 56:577–585. doi:10.1093/jxb/eri046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for their critical comments and helpful advices. The H105 line was kindly provided by professor Shou-Zhong Fu (Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China). This work was funded by National Basic Research Program of China (973) (No. 2006CB101605), the Postdoctoral Scientific Research Sustentation Fund of Jiangsu Province (No. 0701048B), the Agricultural Introduction Program of International Advanced Science and Technology (No. 2006-G04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cunkou Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, SX., Cheng, H. & Qi, C. Microarray analysis of gene expression in seeds of Brassica napus planted in Nanjing (altitude: 8.9 m), Xining (altitude: 2261.2 m) and Lhasa (altitude: 3658 m) with different oil content. Mol Biol Rep 36, 2375–2386 (2009). https://doi.org/10.1007/s11033-009-9460-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9460-3

Keywords

Navigation