Skip to main content
Log in

Genome-wide association study and transcriptome analysis reveal natural variation of key genes regulation flowering time in rapeseed

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Flowering time is a crucial determinant of both the yield and oil quality of rapeseed as well as a key indicator of plant maturity. We performed a genome-wide association study and transcriptome analysis to identify key genes/loci regulating flowering time in Brassica napus L. Forty-six haplotype regions harboring candidate genes were determined to be significantly associated with flowering time, and 28 of these haplotype regions overlapped with previously reported quantitative trait loci. A further investigation of these haplotype regions revealed nucleotide variations in the genes BnaFT-A02, BnaFRI-A10, and BnaFPA-A09 that correlated with phenotypic variations in flowering time. Furthermore, the co-expression network analysis indicated that BnaFT-A02 is directly linked to BnaFRI-A10 and BnaFPA-A09, in a subnetwork and also associated with 13 vernalization, 31 photoperiod, 33 autonomous pathway, and 10 gibberellin pathway genes, forming a potential network regulating flowering time in rapeseed. These results provide valuable haplotype markers for the breeding of early maturing rapeseed varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included in the paper and its supplementary data or are available from the corresponding author on request.

Abbreviations

GWAS:

Genome-wide association study

DH:

Doubled haploid

QTL:

Quantitative trait loci

SNP:

Single nucleotide polymorphism

MAF:

Minor allele frequency

MLM:

Mixed linear model

FDR:

False discovery rate

PCA:

Principal component analysis

Q-Q plot:

Quantile-quantile plot

WGCNA:

Weighted gene co-expression network analysis

H 2 :

Broad-sense heritability

Hap:

Haplotype

GO:

Gene ontology

FT :

FLOWERING LOCUS T

FRI :

FRIGIDA

FPA :

FLOWERING LOCUS PA

FLC :

FLOWERING LOCUS C

References

  • Abbai R, Singh VK, Nachimuthu VV, Sinha P, Selvaraj R, Vipparla AK, Singh AK, Singh UM, Varshney RK, Kumar A (2019) Haplotype analysis of key genes governing grain yield and quality traits across 3K RG panel reveals scope for the development of tailor-made rice with enhanced genetic gains. Plant Biotechnology Journal 17:1612–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Stat Methodol) 57:289–300

    Article  Google Scholar 

  • Bouché F, Lobet G, Tocquin P, Périlleux C (2016) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44:D1167–D1171

    Article  PubMed  Google Scholar 

  • Bouchet A-S, Laperche A, Bissuel-Belaygue C, Baron C, Morice J, Rousseau-Gueutin M, Dheu J-E, George P, Pinochet X, Foubert T (2016) Genetic basis of nitrogen use efficiency and yield stability across environments in winter rapeseed. BMC Genetics 17:1–21

    Article  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association maping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999) Increasing yield of spring oilseed rape hybrids through introgression of winter germplas. Crop Sci 39:1491–1496

    Article  Google Scholar 

  • Chalhoub B, Denoeud F, Liu S et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Choi K, Kim J, Hwang H-J, Kim S, Park C, Kim SY, Lee I (2011) The FRIGIDA complex activates transcription of FLC, a strong flowering repressor in Arabidopsis, by recruiting chromatin modification factors. The Plant Cell 23:289–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong H, Tan C, Li Y, He Y, Wei S, Cui Y, Chen Y, Wei D, Fu Y, He Y, Wan H, Liu Z, Xiong Q, Lu K, Li J, Qian W (2018) Genome-wide association study reveals both overlaping and independent genetic loci to control seed weight and silique length in Brassica napus. Front Plant Sci 9:921

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaudinier A, Blackman BK (2020) Evolutionary processes from the perspective of flowering time diversity. New Phytol 225:1883–1898

    Article  PubMed  Google Scholar 

  • Han X, Tang Q, Xu L, Guan Z, Tu J, Yi B, Liu K, Yao X, Lu S, Guo L (2022) Genome-wide detection of genotype environment interactions for flowering time in Brassica napus. Front Plant Sci 13:1065766

    Article  PubMed  PubMed Central  Google Scholar 

  • Harrell FE, Dupont C (2018) Hmisc: Harrell miscellaneous. R package version 4.1–1. R found stat comput https//CRAN R-project org/package=Hmisc.

  • Helal M, Gill RA, Tang M, Yang L, Hu M, Yang L, Xie M, Zhao C, Cheng X, Zhang Y, Zhang X, Liu S (2021) SNP-and haplotype-based GWAS of flowering-related traits in Brassica napus. Plants 10:2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornyik C, Terzi LC, Simpson GG (2010) The spen family protein FPA controls alternative cleavage and polyadenylation of RNA. Dev Cell 18:203–213

    Article  CAS  PubMed  Google Scholar 

  • Huang L, Min Y, Schiessl S, Xiong X, Jan HU, He X, Qian W, Guan C, Snowdon RJ, Hua W, Qian L (2021) Integrative analysis of GWAS and transcriptome to reveal novel loci regulation flowering time in semi-winter rapeseed. Plant Sci 310:110980

    Article  CAS  PubMed  Google Scholar 

  • Jan H, Guan M, Yao M, Liu W, Wei D, Abbadi A, Zheng M, He X, Chen H, Guan C, Nichols R, Snowdon R, Hua W, Qian L (2019) Genome-wide haplotype analysis improves trait predictions in Brassica napus hybrids. Plant Sci 283:157–164

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Yao M, He X, Xiong X, Guan M, Liu Z, Guan C, Qian L (2022) Transcriptome and regional association analyses reveal the effects of oleosin genes on the accumulation of oil content in Brassica napus. Plants 11:3140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:1–13

    Article  Google Scholar 

  • Li B, Zhao W, Li D, Chao H, Zhao X, Ta N, Li Y, Guan Z, Guo L, Zhang L (2018) Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus. Plant Sci 277:296–310

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Du D, Guo S, Xiao L, Zhao Z, Zhao Z, Xing X, Tang G, Xu L, Fu Z (2016) QTL analysis and the development of closely linked markers for days to flowering in spring oilseed rape (Brassica napus L.). Mol Breeding 36:1–14

    Article  Google Scholar 

  • Liu C, Tu Y, Liao S, Fu X, Lian X, He Y, Xie W, Wang G (2021a) Genome-wide association study of flowering time reveals complex genetic heterogeneity and epistatic interactions in rice. Gene 770:0378–1119

    Article  Google Scholar 

  • Liu L, Xuan L, Jiang Y, Yu H (2021b) Regulation by FLOWERING LOCUS T and TERMINAL FLOWER 1 in flowering time and plant architecture. Small Struct 2:2000125

    Article  CAS  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagaharu U, Nagaharu N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 7:389–452

    Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26:363–373

    Article  CAS  PubMed  Google Scholar 

  • Qiao P, Li X, Liu D, Lu S, Zhi L, Rysbekova A, Chen L, Hu Y (2023) Mining novel genomic regions and candidate genes of heading and flowering dates in bread wheat by SNP-and haplotype-based GWAS. Mol Breeding 43:76

    Article  CAS  Google Scholar 

  • Raman H, Raman R, Eckermann P, Coombes N, Manoli S, Zou X, Edwards D, Meng J, Prangnell R, Stiller J (2013) Genetic and physical mapping of flowering time loci in canola (Brassica napus L.). Theor Appl Genet 126:119–132

    Article  CAS  PubMed  Google Scholar 

  • Raman R, Diffey S, Carling J, Cowley R, Kilian A, Luckett D, Raman H (2016) Quantitative genetic analysis of grain yield in an Australian Brassica napus doubled-haploid population. Crop Pasture Sci 67:298–307

    Article  Google Scholar 

  • Revelle WR (2017) psych: Procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois. R package version 2.2.3, https://CRAN.R-project.org/package=psych. 2022

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin J-H, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Softw 16:1–9

    Article  Google Scholar 

  • Strimmer K (2008) fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 24:1461–1462

    Article  CAS  PubMed  Google Scholar 

  • Tudor EH, Jones DM, He Z, Bancroft I, Trick M, Wells R, Irwin JA, Dean C (2020) QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). Plant Biotechnol J 18:2466–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva RAM, Chen ZJ (2019) ggplot2: Elegant graphics for data analysis (2nd ed.). Meas Interdisc Res Perspect 17:160–167

  • Wang N, Chen BY, Xu K, Gao GZ, Li F, Qiao JW, Yan GX, Li J, Li H, Wu XM (2016) Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits. Front Plant Sci 7:338

    PubMed  PubMed Central  Google Scholar 

  • Wang S, Liu S, Wang J, Yokosho K, Zhou B, Yu YC, Liu Z, Frommer WB, Ma JF, Chen LQ, Guan Y, Shou H, Tian Z (2020) Simultaneous changes in seed size, oil content and protein content driven by selection of SWEET homologues during soybean domestication. Natl Sci Rev 7:1776–1786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Kong X, Guo Y, Wang R, Yao X, Chen X, Yan T, Wu D, Lu Y, Dong J, Zhu Y, Chen M, Cen H, Jiang L (2023) Structural variations and environmental specificities of flowering time-related genes in Brassica napus. Theor Appl Genet 136:42

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Xie M, Wu Y, Cui X, Tang M, Yang L, Xiang Y, Li Y, Bai Z, Huang J, Cheng X, Tong C, Liu L, Liu S, Zhao C (2023) Genetic mapping and regional association analysis revealed a CYTOKININ RESPONSE FACTOR 10 gene controlling flowering time in Brassica napus L. Ind Crop Prod 193:116239

    Article  CAS  Google Scholar 

  • Yao M, Guan M, Yang Q, Huang L, Xiong X, Jan HU, Voss-Fels KP, Werner CR, He X, Qian W, Snowdon RJ, Guan C, Hua W, Qian L (2021) Regional association analysis coupled with transcriptome analyses reveal candidate genes affecting seed oil accumulation in Brassica napus. Theor Appl Genet 134:1545–1555

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Jiang S, Li H, Li Q, Qiu Z, Tao A, Fang P, Xu J, Lin L, Qi J,Zhang L (2023) Genome-wide association study reveals loci and candidate genes of flowering time in jute (Corchorus L.). Molecular Breeding, 43: 85

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Huang J, Tang M, Cheng X, Liu Y, Tong C, Yu J, Sadia T, Dong C, Liu L, Tang B, Chen J, Liu S (2019) Syntenic quantitative trait loci and genomic divergence for sclerotinia resistance and flowering time in Brassica napus. J Integr Plant Biol 61:75–88

    Article  PubMed  Google Scholar 

  • Ziolkowski PA, Kaczmarek M, Babula D, Sadowski J (2006) Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoint. Plant J 47:63–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank TopEdit (www.topeditsci.com) for its linguistic assistance during the preparation of this manuscript.

Funding

This study was funded by the Hunan Province Science and Technology Innovation Leading Talent Project (grant No. S2023YZCXLJ0098), the Science Foundation for Distinguished Youth Scholars of Hunan Province (grant No. 2022JJ10027), and the National Natural Science Foundation of China (grant No. 32072100).

Author information

Authors and Affiliations

Authors

Contributions

Lunwen Qian conceived the research idea and plans. Xingru Xiang and Ping Qiu analyzed data and prepared the manuscript. Zhichao Mei, Min Yao and Wei Liu performed data mining and bioinformatics. Dan He and Song Cao carried out reagents and the field experiments. Xin He, Xinghua Xiong, Zhongsong Liu and Lunwen Qian revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Lunwen Qian.

Ethics declarations

Ethics approval

All authors approved the submission.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 741 KB)

Supplementary file2 (XLSX 302 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, X., Qiu, P., Mei, Z. et al. Genome-wide association study and transcriptome analysis reveal natural variation of key genes regulation flowering time in rapeseed. Mol Breeding 44, 40 (2024). https://doi.org/10.1007/s11032-024-01479-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-024-01479-4

Keywords

Navigation