Skip to main content

Advertisement

Log in

Regulatory network of rice in response to heat stress and its potential application in breeding strategy

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The rapid development of global industrialization has led to serious environmental problems, among which global warming has become one of the major concerns. The gradual rise in global temperature resulted in the loss of food production, and hence a serious threat to world food security. Rice is the main crop for approximately half of the world’s population, and its geographic distribution, yield, and quality are frequently reduced due to elevated temperature stress, and breeding rice varieties with tolerance to heat stress is of immense significance. Therefore, it is critical to study the molecular mechanism of rice in response to heat stress. In the last decades, large amounts of studies have been conducted focusing on rice heat stress response. Valuable information has been obtained, which not only sheds light on the regulatory network underlying this physiological process but also provides some candidate genes for improved heat tolerance breeding in rice. In this review, we summarized the studies in this field. Hopefully, it will provide some new insights into the mechanisms of rice under high temperature stress and clues for future engineering breeding of improved heat tolerance rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Aghamolki MTK, Yusop MK, Oad FC, Zakikhani H, Jaafar HZ, Kharidah S, Hanafi MM (2014) Heat stress effects on yield parameters of selected rice cultivars at reproductive growth stages. J Food Agric Environ 12:741–746

    Google Scholar 

  • Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Begcy K, Sandhu J, Walia H (2018) Transient heat stress during early seed development primes germination and seedling establishment in rice. Front Plant Sci 9:1768

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Guo T, Li XM, Zhang YM, Yang YB, Ye WW, Dong NQ, Shi CL, Kan Y, Xiang YH, Zhang H, Li YC, Gao JP, Huang X, Zhao Q, Han B, Shan JX, Lin HX (2019) Translational regulation of plant response to high temperature by a dual-function tRNAHis guanylyltransferase in rice. Mol Plant 12:1123–1142

    Article  CAS  PubMed  Google Scholar 

  • Cheng Q, Zhou Y, Liu Z, Zhang L, Song G, Guo Z, Wang W, Qu X, Zhu Y, Yang D (2019) An alternatively spliced heat shock transcription factor, OsHSFA2dI, functions in the heat stress-induced unfolded protein response in rice. Plant Biol 17:419–429

    Article  Google Scholar 

  • Cui Y, Lu S, Li Z, Cheng J, Hu P, Zhu T, Wang X, Jin M, Wang X, Li L, Huang S, Zou B, Hua J (2020) CYCLIC NUCLEOTIDE-GATED ION CHANNELs 14 and 16 promote tolerance to heat and chilling in rice. Plant Physiol 183:1794–1808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Krishnan P, Nayak M, Ramakrishnan B (2014) High temperature stress effects on pollens of rice (Oryza sativa L.) genotypes. Environ Exp Bot 101:36–46

    Article  Google Scholar 

  • de Pinto MC, Locato V, Paradiso A, Gara L (2015) Role of redox homeostasis in thermo-tolerance under a climate change scenario. Ann Bot 116:487–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Driedonks N, Rieu I, Vriezen WH (2016) Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reprod 29:67–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Yacoubi B, Bailly M, Crécy-Lagard V (2012) Biosynthesis and function of posttranscriptional modifications of transfer RNAs. Annu Rev Genet 46:69–95

    Article  PubMed  Google Scholar 

  • Enrique Gomez R, Joubès J, Valentin N, Batoko H, Satiat-Jeunemaître B, Bernard A (2017) Lipids in membrane dynamics during autophagy in plants. J Exp Bot 69:1287–1299

    Article  Google Scholar 

  • Fichman Y, Mittler R (2020) Rapid systemic signaling during abiotic and biotic stresses: Is the ROS wave master of all trades? Plant J 102:887–896

    Article  CAS  PubMed  Google Scholar 

  • Fu G, Feng B, Zhang C, Yang Y, Yang X, Chen T, Zhao X, Zhang X, Jin Q, Tao L (2016) Heat stress is more damaging to superior spikelets than inferiors of rice (Oryza sativa L.) due to their different organ temperatures. Front. Plant Sci 7:1637

    Google Scholar 

  • Gai WX, Ma X, Li Y, Xiao JJ, Khan A, Li QH, Gong ZH (2020) CaHsfA1d improves plant thermotolerance via regulating the expression of stress- and antioxidant-related genes. Int J Mol Sci 21:8374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong M, Luit A, Knight M, Trewavas A (1998) Heat-shock induces changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437

    Article  CAS  PubMed Central  Google Scholar 

  • Hayashi S, Wakasa Y, Takahashi H, Kawakatsu T, Takaiwa F (2012) Signal transduction by IRE1-mediated splicing of bZIP50 and other stress sensors in the endoplasmic reticulum stress response of rice. Plant J 69:946–956

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Zhao X, Bürger M, Wang Y, Chory J (2012) Two interacting ethylene response factors regulate heat stress response. Plant Cell 33:338–357

    Article  CAS  Google Scholar 

  • Hurkman WJ, McCue KF, Altenbach SB (2003) Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Sci 164:873–881

    Article  CAS  Google Scholar 

  • Jagadish SV, Craufurd PQ, Wheeler TR (2007) High temperature stress and spikelet fertility in rice (Oryza sativa L.). J Exp Bot 58:1627–1635

    Article  CAS  PubMed  Google Scholar 

  • Jagadish SVK, Way DA, Sharkey TD (2021) Plant heat stress: concepts directing future research. Plant Cell Environ 44:1992–2005

    Article  CAS  PubMed  Google Scholar 

  • Jarmoskaite I, Russell R (2014) RNA helicase proteins as chaperones and remodelers. Annu Rev Biochem 83:697–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong HY, Nguyen HP, Lee C (2015) Genome-wide identification and expression analysis of rice pectin methylesterases: implication of functional roles of pectin modification in rice physiology. J Plant Physiol 183:23–29

    Article  CAS  PubMed  Google Scholar 

  • Kan Y, Mu XR, Zhang H, Gao J, Shan JX, Ye WW, Lin HX (2022) TT2 controls rice thermotolerance through SCT1-dependent alteration of wax biosynthesis. Nat Plants 8:53–67

    Article  CAS  PubMed  Google Scholar 

  • Kilasi NL, Singh J, Vallejos CE, Ye C, Jagadish SVK, Kusolwa P, Rathinasabapathi B (2018) Heat stress tolerance in rice (Oryza sativa L.): identification of quantitative trait loci and candidate genes for seedling growth under heat stress. Front. Plant Sci 9:1578

    Google Scholar 

  • Kim JH, Lim SD, Jang CS (2019) Oryza sativa heat-induced RING finger protein 1 (OsHIRP1) positively regulates plant response to heat stress. Plant Mol Biol 99:545–559

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Lim SD, Jang CS (2020) Oryza sativa drought-, heat-, and salt-induced RING finger protein1 (OsDHSRP1) negatively regulates abiotic stress-responsive gene expression. Plant Mol Biol 103:235–252

    Article  CAS  PubMed  Google Scholar 

  • Kotak S, Larkindale J, Lee U, Koskull-Döring P, Vierling E, Scharf KD (2007) Complexity of the heat stress response in plants. Curr Opin Plant Biol 10:310–316

    Article  CAS  PubMed  Google Scholar 

  • Kuang J, Liu J, Mei J, Wang C, Hu H, Zhang Y, Sun M, Ning X, Xiao L, Yang L (2017) A Class II small heat shock protein OsHsp18.0 plays positive roles in both biotic and abiotic defense responses in rice. Sci Rep 7:11333

    Article  PubMed  PubMed Central  Google Scholar 

  • Li B, Gao K, Ren H, Tang W (2018) Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol 60:757–779

    Article  PubMed  Google Scholar 

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan JX, Gao JP, Lin HX (2015) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nat Genet 47:827–833

    Article  CAS  PubMed  Google Scholar 

  • Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64:2899–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin MY, Chai KH, Ko SS, Kuang LY, Lur HS, Charng YY (2014) A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol 164:2045–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Hasanuzzaman M, Wen H, Zhang J, Peng T, Sun H, Zhao Q (2019) High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice. Protoplasma 256:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sun X, Xu F, Zhang Y, Zhang Q, Miao R, Zhang J, Liang J, Xu W (2018) Suppression of OsMDHAR4 enhances heat tolerance by mediating H2O2-induced stomatal closure in rice plants. Rice 11:38

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Zhang C, Wei C, Liu X, Wang M, Yu F, Xie Q, Tu J (2016) The RING finger ubiquitin E3 ligase OsHTAS enhances heat tolerance by promoting H2O2-induced stomatal closure in rice. Plant Physiol 170:429–443

    Article  CAS  PubMed  Google Scholar 

  • Liu JX, Howell SH (2010) Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22:2930–2942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XH, Lyu YS, Yang W, Yang ZT, Lu SJ, Liu JX (2020) A membrane-associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnol J 18:1317–1329

    Article  CAS  PubMed  Google Scholar 

  • Lu SJ, Yang ZT, Sun L, Sun L, Song ZT, Liu JX (2012) Conservation of IRE1-regulated bZIP74 mRNA unconventional splicing in rice (Oryza sativa L.) involved in ER stress responses. Mol Plant 5:504–514

    Article  CAS  PubMed  Google Scholar 

  • Lv Y, Guo Z, Li X, Ye H, Li X, Xiong L (2016) New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis. Plant Cell Environ 39:556–570

    Article  CAS  PubMed  Google Scholar 

  • Lyzenga WJ, Stone SL (2012) Abiotic stress tolerance mediated by protein ubiquitination. J Exp Bot 63:599–616

    Article  CAS  PubMed  Google Scholar 

  • Mhamdi A, Queval G, Chaouch S, Vanderauwera S, Breusegem F, Noctor G (2010) Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Exp Bot 61:4197–4220

    Article  CAS  PubMed  Google Scholar 

  • Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47:785–795

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    Article  CAS  PubMed  Google Scholar 

  • Müller F, Rieu I (2016) Acclimation to high temperature during pollen development. Plant Reprod 29:107–118

    Article  PubMed  PubMed Central  Google Scholar 

  • Narayanan S, Tamura PJ, Roth MR, Prasad PV, Welti R (2016) Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ 39:787–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nawaz Z, Kakar KU, Saand MA, Shu QY (2014) Cyclic nucleotide-gated ion channel gene family in rice, identification, characterization and experimental analysis of expression response to plant hormones, biotic and abiotic stresses. BMC Genomics 15:853

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu Y, Xiang Y (2018) An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci 9:915

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    Article  CAS  PubMed  Google Scholar 

  • Prasad P, Bheemanahalli R, Jagadish S (2017) Field crops and the fear of heat stress—opportunities, challenges and future directions. Field Crop Res 200:114–121

    Article  Google Scholar 

  • Prasad P, Boote K, Allen L, Sheehy J, Thomas J (2006) Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crop Res 95:398–411

    Article  Google Scholar 

  • Qiao B, Zhang Q, Liu D, Wang H, Yin J, Wang R, He M, Cui M, Shang Z, Wang D, Zhu Z (2015) A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot 6:5853–5866

    Article  Google Scholar 

  • Quint M, Delker C, Franklin KA, Wigge PA, Halliday KJ, Zanten M (2016) Molecular and genetic control of plant thermomorphogenesis. Nat Plants 2:15190

    Article  CAS  PubMed  Google Scholar 

  • Raza Q, Riaz A, Bashir K, Sabar M (2020) Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. Plant Mol Biol 104:97–112

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Huang Z, Jiang H, Wang Z, Wu F, Xiong Y, Yao J (2021) A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. J Exp Bot 72:2947–2964

    Article  CAS  PubMed  Google Scholar 

  • Saidi Y, Finka A, Muriset M, Bromberg Z, Weiss YG, Maathuis FJ, Goloubinoff P (2009) The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21:2829–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sailaja B, Subrahmanyam D, Neelamraju S, Vishnukiran T, Rao YV, Vijayalakshmi P, Voleti SR, Bhadana VP, Mangrauthia SK (2015) Integrated physiological, biochemical, and molecular analysis identifies important traits and mechanisms associated with differential response of rice genotypes to elevated temperature. Front Plant Sci 6:1044

    Article  PubMed  PubMed Central  Google Scholar 

  • Sarkar NK, Kotak S, Agarwal M, Kim YK, Grover A (2019) Silencing of class I small heat shock proteins affects seed-related attributes and thermotolerance in rice seedlings. Planta 251:26

    Article  PubMed  Google Scholar 

  • Sato H, Mizoi J, Tanaka H, Maruyama K, Qin F, Osakabe Y, Morimoto K, Ohori T, Kusakabe K, Nagata M, Shinozaki K, Yamaguchi-Shinozaki K (2014) Arabidopsis DPB3-1, a DREB2A interactor, specifically enhances heat stress-induced gene expression by forming a heat stress-specific transcriptional complex with NF-Y subunits. Plant Cell 26:4954–4973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato H, Todaka D, Kudo M, Mizoi J, Kidokoro S, Zhao Y, Shinozaki K, Yamaguchi-Shinozaki K (2016) The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnol J 14:1756–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scafaro AP, Haynes PA, Atwell BJ (2010) Physiological and molecular changes in Oryza meridionalis Ng. a heat-tolerant species of wild rice. J Exp Bot 61:191–202

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Berberich T, Ebersberger I, Nover L (2012) The plant heat stress transcription factor (Hsf) family: structure, function and evolution. Biochim Biophys Acta 1819:104–119

    Article  CAS  PubMed  Google Scholar 

  • Scharf KD, Rose S, Zott W, Schöffl F, Nover L (1990) Three tomato genes code for heat stress transcription factors with a region of remarkable homology to the DNA-binding domain of the yeast HSF. EMBO J 9:4495–4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma E, Borah P, Kaur A, Bhatnagar A, Mohapatra T, Kapoor S, Khurana JP (2021) A comprehensive transcriptome analysis of contrasting rice cultivars highlights the role of auxin and ABA responsive genes in heat stress response. Genomics 113:1247–1261

    Article  CAS  PubMed  Google Scholar 

  • Shen H, Zhong X, Zhao F, Wang Y, Yan B, Li Q, Chen G, Mao B, Wang J, Li Y, Xiao G, He Y, Xiao H, Li J, He Z (2015) Overexpression of receptor-like kinase ERECTA improves thermotolerance in rice and tomato. Nat Biotechnol 33:996–1003

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Mittal D, Lavania D, Agarwal M, Mishra RC, Grover A (2012) OsHsfA2c and OsHsfB4b are involved in the transcriptional regulation of cytoplasmic OsClpB (Hsp100) gene in rice (Oryza sativa L.). Cell Stress Chaperones 17:243–254

    Article  CAS  PubMed  Google Scholar 

  • Singha DL, Maharana J, Panda D, Dehury B, Modi MK, Singh S (2021) Understanding the thermal response of rice eukaryotic transcription factor eIF4A1 towards dynamic temperature stress: Insights from expression profiling and molecular dynamics simulation. J Biomol Struct Dyn 39:2575–2584

    Article  CAS  PubMed  Google Scholar 

  • Soda N, Gupta BK, Anwar K, Sharan A, Govindjee SL, Singla-Pareek AP (2018) Rice intermediate filament, OsIF, stabilizes photosynthetic machinery and yield under salinity and heat stress. Sci Rep 8:4072

    Article  PubMed  PubMed Central  Google Scholar 

  • Suri SS, Dhindsa RS (2008) A heat-activated MAP kinase (HAMK) as a mediator of heat shock response in tobacco cells. Plant Cell Environ 31:218–226

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Qin B, Li X, Tang D, Zhang Y, Cheng Z, Xue Y (2016) Nucleolar DEAD-box RNA helicase TOGR1 regulates thermotolerant growth as a pre-rRNA chaperone in rice. PLoS Genet 12:e1005844

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang GF, Li WQ, Li WY, Wu GL, Zhou CY, Chen KM (2013) Characterization of Rice NADPH oxidase genes and their expression under various environmental conditions. Int J Mol Sci 14:9440–9458

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wang C, Wang K (2019) Generation of marker-free transgenic rice using CRISPR/Cas9 system controlled by floral specific promoters. J Genet Genomics 46:61–64

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Xu J, Wang L, Zhou M, Nian J, Chen M, Lu X, Liu X, Wang Z, Cen J, Liu Y, Zhang Z, Zeng D, Hu J, Zhu L, Dong G, Ren D, Gao Z, Shen L et al (2023) SEMI-ROLLED LEAF 10 stabilizes catalase isozyme B to regulate leaf morphology and thermotolerance in rice (Oryza sativa L.). Plant Biotechnol J 21:819–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu HC, Bulgakov VP, Jinn TL (2018) Pectin methylesterases: cell wall remodeling proteins are required for plant response to heat stress. Front Plant Sci 9:1612

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu HC, Jinn TL (2010) Heat shock-triggered Ca2+ mobilization accompanied by pectin methylesterase activity and cytosolic Ca2+ oscillation are crucial for plant thermotolerance. Plant Signal Behav 5:1252–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K (2009) Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep 28:21–30

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Yang Y, Fu G, Tao L (2015) Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa L.) root tips. New Phytol 206:118–126

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Chu C, Yao S (2021) The impact of high-temperature stress on rice: challenges and solutions. The Crop J 9:963–976

    Article  Google Scholar 

  • Xu Y, Zhang L, Ou S, Wang R, Wang Y, Chu C, Yao S (2020) Natural variations of SLG1 confer high-temperature tolerance in indica rice. Nat Commun 11:5441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li G, Chen T, Feng B, Fu W, Yan J, Islam MR, Jin Q, Tao L, Fu G (2018a) Heat stress induces spikelet sterility in rice at anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 11:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Xu H, Feng M, Zhu Y (2018b) Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress. Plant Biotechnol J 16:18–26

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhou JF, Kan Y, Shan JX, Ye WW, Dong NQ, Guo T, Xiang YH, Yang YB, Li YC, Zhao HY, Yu HX, Lu ZQ, Guo SQ, Lei JJ, Liao B, Mu XR, Cao YJ, Yu JJ et al (2022) A genetic module at one locus in rice protects chloroplasts to enhance thermotolerance. Science 376:1293–1300

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci U S A 104:16402–16409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Zhou RG, Gao YJ, Zheng SZ, Xu P, Zhang SQ, Sun DY (2009) Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol 149:1773–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu JL, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang M, Yao Y, Bassu S, Ciais P, Durand JL, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci U S A 114:9326–9331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to the authors whose work could not be cited in this review owing to space limitations.

Funding

This work was supported by the Foundation of Hubei Hongshan Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

All the authors Z.M., J.L., W.W., D.F., S.L., Y.K., and P.Y. discussed and created the outline, Z.M. and J.L. wrote the manuscript, and Y.K. and P.Y. revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yinggen Ke or Pingfang Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Z., Lv, J., Wu, W. et al. Regulatory network of rice in response to heat stress and its potential application in breeding strategy. Mol Breeding 43, 68 (2023). https://doi.org/10.1007/s11032-023-01415-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-023-01415-y

Keywords

Navigation