Skip to main content
Log in

Morphological and gene expression characterization of maf-1, a floral chili pepper mutant caused by a nonsense mutation in CaLFY

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Chili peppers are important as vegetables and ornamental crops, because of the variety of fruit shapes and colors. Understanding of flower and fruit development in Capsicum is limited compared with closely related Solanaceae crops such as tomato. This study reports a novel malformed fruit mutant named malformed fruit-1 (maf-1), which was isolated from an ethyl methanesulfonate–induced mutant population of chili pepper. maf-1 exhibited homeotic changes in the floral bud, which were characterized by conversion of petals and stamens into sepal-like and carpel-like organs, respectively. In addition, the indeterminate formation of carpel-like tissue was observed. Genetic analysis demonstrated that the causative gene in maf-1 is a nonsense mutation in CaLFY. This is the first characterization of an lfy mutant in Capsicum. Unlike tomatoes, the CaLFY mutation did not affect the architecture of sympodial unit or flowering time but mainly affected the formation of flower organs. Gene expression analysis suggested that a nonsense mutation in CaLFY led to decreased expression of multiple class B genes, resulting in homeotic changes in the flower and fruit. This maf-1 mutant may provide new insights at the molecular level in understanding flower organ formation and the genetic manipulation of fruit shape in chili peppers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Relevant data are included in this paper and its associated Supplementary Information.

References

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borovsky Y, Sharma VK, Verbakel H, Paran I (2015) CaAP2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum. Theor Appl Genet 128:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Bosland PW, Votava EJ (2000) Peppers: vegetable and spice capsicums. CABI Publishing, New York

    Google Scholar 

  • Busi MV, Bustamante C, D’Angelo C, Hidalgo-Cuevas M, Boggio SB, Valle EM, Zabaleta E (2003) MADS-box genes expressed during tomato seed and fruit development. Plant Mol Biol 52:801–815

    Article  CAS  PubMed  Google Scholar 

  • Chung E, Seong E, Kim YC, Chung EJ, Oh S-K, Lee S, Park JM, Jung H, Choi D (2004) A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol Cells 17:377–380

    CAS  PubMed  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Cohen O, Borovsky Y, David-Schwartz R, Paran I (2012) CaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper. J Exp Bot 63:4947–4957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen O, Borovsky Y, David-Schwartz R, Paran I (2014) Capsicum annuum S (CaS) promotes reproductive transition and is required for flower formation in pepper (Capsicum annuum). New Phytol 202:1014–1023

    Article  CAS  PubMed  Google Scholar 

  • de Martino G, Pana I, Emmanuel E, Levy A, Vivian F, Irish VF (2006) Functional analyses of two tomato APETALA3 genes demonstrate diversification in their roles in regulating floral development. Plant Cell 18:1833–1845

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denay G, Chahtane H, Tichtinsky G, Parcy F (2017) A flower is born: an update on Arabidopsis floral meristem formation. Curr Opin Plant Biol 35:15–22

    Article  PubMed  Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA et al (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elitzur T, Nahum H, Borovsky Y, Pekker I, Eshed Y, Paran I (2009) Co-ordinated regulation of flowering time, plant architecture and growth by FASCICULATE: the pepper orthologue of SELF PRUNING. J Exp Bot 60:869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geuten K, Irish V (2010) Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. Plant Cell 22:2562–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez E, Castañeda L, Pineda B, Pan IL, Moreno V, Angosto T et al (2016) TOMATO AGAMOUS1 and ARLEQUIN/TOMATO AGAMOUS-LIKE1 MADS-box genes have redundant and divergent functions required for tomato reproductive development. Plant Mol Biol 91:513–531

    Article  CAS  PubMed  Google Scholar 

  • Gómez P, Jamilena M, Capel J, Zurita S, Angosto T, Lozano R (1999) Stamenless, a tomato mutant with homeotic conversions in petals and stamens. Planta 209:172–179

    Article  PubMed  Google Scholar 

  • Hamès C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gérard F, Martiel JL, Benlloch R, Parcy F, Müller CW (2008) Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J 27:2628–2637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587

    Article  CAS  PubMed  Google Scholar 

  • Jeifetz D, David-Schwartz R, Borovsky Y, Paran I (2011) CaBLIND regulates axillary meristem initiation and transition to flowering in pepper. Planta 234:1227–1236

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Ohta K, Komata Y, Araki T, Kanahama K, Kanayama Y (2005) Morphological and molecular analyses of the tomato floral mutant leafy in florescence, a new allele of falsiflora. Plant Sci 169:131–138

    Article  CAS  Google Scholar 

  • Kim DH, Han MS, Cho HW, Kim DS, Kim HJ, Kim BD (2008) Molecular cloning of the CaLFY, putative pepper ortholog of FLO/LFY. Mol Breed 22:443–453

    Article  CAS  Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Park M, Jeong ES, Lee JM, Choi D (2017) Harnessing anthocyanin-rich fruit: a visible reporter for tracing virus-induced gene silencing in pepper fruit. Plant Methods 13:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of petal and stamen development, gene duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb RS, Hill TA, Tan QK, Irish VF (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079–2086

    Article  CAS  PubMed  Google Scholar 

  • Lenhard M, Bohnert A, Jurgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lippman ZB, Cohen O, Alvarez JP, Abu-Abied M, Pekker I, Paran I, Eshed Y, Zamir D (2008) The making of a compound inflorescence in tomato and related nightshades. PLoS Biol 6:e288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142

    Article  CAS  PubMed  Google Scholar 

  • Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    Article  CAS  PubMed  Google Scholar 

  • Lozano R, Gimenez E, Cara B, Capel J, Angosto T (2009) Genetic analysis of reproductive development in tomato. Int J Dev Biol 53:8–10

    Article  CAS  Google Scholar 

  • Mazzucato A, Olimpieri I, Siligato F, Picarella ME, Soressi GP (2008) Characterization of genes controlling stamen identity and development in a parthenocarpic tomato mutant indicates a role for the DEFICIENS ortholog in the control of fruit set. Physiol Plant 132:526–537

    Article  CAS  PubMed  Google Scholar 

  • Molinero-Rosales N, Jamilena M, Zurita S, Gomez P, Capel J, Lozano R (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J 20:685–693

    Article  CAS  PubMed  Google Scholar 

  • Ó’Maoiléidigh DS, Graciet E, Wellmer F (2014) Gene networks controlling Arabidopsis thaliana flower development. New Phytol 201:16–30

    Article  PubMed  Google Scholar 

  • Pajoro A, Biewers S, Dougali E, Leal Valentim F, Mendes MA, Porri A et al (2014) The (r)evolution of gene regulatory networks controlling Arabidopsis plant reproduction: a two-decade history. J Exp Bot 65:4731–4745

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Tapia-Lopez R, Alvarez-Buylla ER, Yanofsky MF (2001) Conversion of leaves into petals in Arabidopsis. Curr Biol 11:182–184

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Abu-Abeid M, Zamir D, Nacken W, Schwarzsommer Z, Lifschitz E (1991) The MADS box gene family in tomato: temporal expression during floral development, conserved secondary structures and homology with homeotic genes from Antirrhinum and Arabidopsis. Plant J 1:255–266

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Hareven D, Rounsley SD, Yanofsky MF (1994a) Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6:163–173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C (1994b) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6:175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinet M, Bataille G, Dobrev PI, Capel C, Gomez P, Capel J, Lutts S, Motyka V, Angosto T, Lozano R (2014) Transcriptional and hormonal regulation of petal and stamen development by STAMENLESS, the tomato (Solanum lycopersicum L.) orthologue to the B-class APETALA3 gene. J Exp Bot 65:2243–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S (2019) Tomato fruit development and metabolism. Front Plant Sci 10:1554

    Article  PubMed  PubMed Central  Google Scholar 

  • Siriwardana NS, Lamb RS (2012a) The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation. Int J Dev Biol 56:207–221

    Article  CAS  PubMed  Google Scholar 

  • Siriwardana NS, Lamb RS (2012b) A conserved domain in the N-terminus is important for LEAFY dimerization and function in Arabidopsis thaliana. Plant J 71:736–749

    Article  CAS  PubMed  Google Scholar 

  • Souer E, van der Krol A, Kloos D, Spelt C, Bliek M, Mol J, Koes R (1998) Genetic control of branching pattern and floral identity during Petunia inflorescence development. Development 125:733–742

    Article  CAS  PubMed  Google Scholar 

  • Sundström JF, Nakayama N, Glimelius K, Irish VF (2006) Direct regulation of the floral homeotic APETALA1 gene by APETALA3 and PISTILLATA in Arabidopsis. Plant J 46:593–600

    Article  PubMed  CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Mitani A, Shimizu N, Goto T, Yoshida Y, Yasuba K (2021) Characterization and bulk segregant analysis of a novel seedless mutant tn-1 of chili pepper (Capsicum annuum). Sci Hortic 276:109729

    Article  CAS  Google Scholar 

  • Thomson B, Wellmer F (2019) Molecular regulation of flower development. Curr Top Dev Biol 131:185–210

    Article  PubMed  Google Scholar 

  • Viaene T, Vekemans D, Irish VF, Geeraerts A, Huysmans S, Janssens S, Smets E, Geuten K (2009) Pistillata—duplications as a mode for floral diversification in (basal) Asterids. Mol Biol Evol 26:2627–2645

    Article  CAS  PubMed  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859

    Article  CAS  PubMed  Google Scholar 

  • Winter CM, Austin RS, Blanvillain-Baufume S, Reback MA, Monniaux M, Wu MF, Sang Y, Yamaguchi A, Yamaguchi N, Parker JE et al (2011) LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response. Dev Cell 20:430–443

    Article  CAS  PubMed  Google Scholar 

  • Zhou YJ, Deng YT, Liu D, Wang HZ, Zhang X, Liu TT et al (2021) Promoting virus-induced gene silencing of pepper genes by a heterologous viral silencing suppressor. Plant Biotechnol J 19:2398–2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Computations were partially performed on the NIG supercomputer at ROIS National Institute of Genetics.

Funding

This study was supported in part by a Grant-in-Aid for Scientific Research (B) (21H02187).

Author information

Authors and Affiliations

Authors

Contributions

YT designed the research, conducted the mapping-by-sequencing analysis, and wrote the manuscript. MY conducted the genetic analysis and gene expression analyses. NG conducted the anatomical analyses. TG, YY, and KY assisted with the cultivation and screening of the maf-1 mutant. SO and MD interpreted the results of the genetic and expression analyses. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yoshiyuki Tanaka.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, Y., Yokota, M., Goto, N. et al. Morphological and gene expression characterization of maf-1, a floral chili pepper mutant caused by a nonsense mutation in CaLFY. Mol Breeding 42, 32 (2022). https://doi.org/10.1007/s11032-022-01304-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-022-01304-w

Keywords

Navigation