Skip to main content
Log in

A TILLING allele of the tomato Aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Parthenocarpy is a desired trait in fruit crops; it enables fruit set under environmental conditions suboptimal for pollination, and seedless fruits represent a valuable consumer product. We employed TILLING-based screening of a mutant tomato population to find genetic lesions in Aux/IAA9, a negative regulator of the auxin response involved in the control of fruit set. We identified three mutations located in the coding region of this gene, including two single-base substitutions and one single-base deletion, which leads to a frame shift and premature stop codon. The transcription of IAA9 was strongly reduced in the frame-shift mutant, and partial loss of mutated protein activity was evidenced by an in vitro transactivation assay. Whereas missense mutations were predicted to be tolerated and did not cause mutant phenotypes, the frame-shift mutation-induced phenotypes expected for a loss of IAA9 function, including altered axillary shoot growth, reduced leaf compoundness and a strong tendency to produce parthenocarpic fruits. Mutant flowers showed pleiotropic anther cone defects, a phenotype frequently associated with parthenocarpy in tomato and other species. Mutant fruits were larger than those of the seeded control, with higher brix values and similar firmness. Fruit set was higher in the mutant than in wild type in the greenhouse, but lower in the open field. Facultative expression of parthenocarpy indicated that the mutant is suitable for hybrid seed production and for increasing seeds of parental lines. The results highlight the utility of this novel IAA9 allele for exploiting parthenocarpy by breeding tomato adapted to pollination-limiting growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile experimental system to study gene expression. Plant J 5:421–427

    Article  CAS  PubMed  Google Scholar 

  • Ampomah-Dwamena C, Morris B, Sutherland P, Veit B, Yao J-L (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130:605–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M, Bouzayen M (2012) Genome-wide identification, functional analysis and expression profiling of Aux/IAA gene family in tomato. Plant Cell Physiol 53:659–672

    Article  CAS  PubMed  Google Scholar 

  • Bassa C, Mila I, Bouzayen M, Audran-Delalande C (2012) Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in the tomato. Plant Cell Physiol 53:1583–1595

    Article  CAS  PubMed  Google Scholar 

  • Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136:823–832

    Article  CAS  PubMed  Google Scholar 

  • Bianchi A, Soressi GP (1969) Mutanti di pomodoro artificialmente indotti suscettibili di utilizzazione nel miglioramento genetico. Sementi Elette 15(3):2–6

    Google Scholar 

  • Carmi N, Salts Y, Dedicova B, Shabtai S, Barg R (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217:726–735

    Article  CAS  PubMed  Google Scholar 

  • Chaabouni S, Jones B, Delalande C, Wang H, Li Z, Mila I, Frasse P, Latché A, Pech JC, Bouzayen M (2009) Sl-IAA3, a tomato Aux/IAA at the crossroads of auxin and ethylene signalling involved in differential growth. J Exp Bot 60:1349–1362

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalmais M, Schmidt J, Le Signor C, Moussy F, Burstin J, Savois V, Aubert G, Brunaud V, de Oliveira Y, Guichard C, Thompson R, Bendahmane A (2008) UTILLdb, a Pisum sativum in silico forward and reverse genetics tool. Genome Biol 9:R43

    Article  PubMed Central  PubMed  Google Scholar 

  • De Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH (2009) The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. Plant J 57:160–170

    Article  CAS  PubMed  Google Scholar 

  • Deng W, Yang Y, Ren Z, Delalande C, Mila I, Wang X, Song H, Hu Y, Bouzayen M, Li Z (2012) The tomato SlIAA15 is involved in trichome formation and axillary shoot development. New Phytol 194:379–390

    Article  CAS  PubMed  Google Scholar 

  • Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed Central  PubMed  Google Scholar 

  • Falavigna A, Badino M, Soressi GP (1978) Possibilità di impiego del carattere di partenocarpia pat nel miglioramento genetico del pomodoro da industria. Genetica Agraria 32:159–160

    Google Scholar 

  • Fos M, Nuez F (1991) Efecto de la partenocarpia sobre el desarrollo de ovarios en tomate. Actas Horticultura 8:63–71

    Google Scholar 

  • Fos M, Nuez F, Garcia-Martinez J (2000) The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated ovaries. Plant Physiol 122:471–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fos M, Proano K, Nuez F, Garcia-Martinez J (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550

    Article  CAS  PubMed  Google Scholar 

  • George WL, Scott J, Splittstoesser W (1984) Parthenocarpy in tomato. Hort Rev 6:65–84

    Google Scholar 

  • Geuten K, Irish V (2010) Hidden variability of floral homeotic B genes in Solanaceae provides a molecular basis for the evolution of novel functions. Plant Cell 22:2562–2578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145:351–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gomez P, Jamilena M, Capel J, Zurita S, Angosto T (1999) Stamenless, a tomato mutant with homeotic conversions in petals and stamens. Planta 209:172–179

    Article  CAS  PubMed  Google Scholar 

  • Gorguet B, van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131

    Article  CAS  PubMed  Google Scholar 

  • Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414:271–276

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ (1998) Aux/IAA proteins and auxin signal transduction. Trends Plant Sci 3:205–207

    Article  Google Scholar 

  • Kim J, Harter K, Theologis A (1997) Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94:11786–11791

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leclercq J, Ranty B, Sanchez-Ballesta MT, Li Z, Jones B, Jauneau A, Pech J-C, Latché A, Ranjeva R, Bouzayen M (2005) Molecular and biochemical characterization of LeCRK1, a ripening associated tomato CDPK-related kinase. J Exp Bot 56:25–35

    CAS  PubMed  Google Scholar 

  • Lejeune F, Maquat LE (2005) Mechanistic links between nonsense-mediated mRNA decay and pre-mRNA splicing in mammalian cells. Curr Opin Cell Biol 17:309–315

    Article  CAS  PubMed  Google Scholar 

  • Lifschitz E, Brodai L, Hareven D, Hurwitz C, Prihadash A, Pnueli L, Samach A, Zamir D (1993) Molecular mapping of flower development in tomato. In: Yoder Y, Lancaster PA (eds) Molecular biology of tomato. Technomic Publishing, Lancaster, PA, pp 175–184

    Google Scholar 

  • Lin S, George W, Splittstoesser W (1984) Expression and inheritance of parthenocarpy in ‘Severianin’ tomato. J Hered 75:62–66

    Google Scholar 

  • Mapelli S, Frova C, Torti G, Soressi GP (1978) Relationship between set, development and activities of growth regulators in tomato fruits. Plant Cell Physiol 19:1281–1288

    CAS  Google Scholar 

  • Martí C, Orzáez D, Ellul P, Moreno V, Carbonell J, Granell A (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52:865–876

    Article  PubMed  Google Scholar 

  • Mazzucato A, Taddei AR, Soressi GP (1998) The parthenocarpic fruit (pat) mutant of tomato (Lycopersicon esculentum Mill.) sets seedless fruits and has aberrant anther and ovule development. Development 125:107–114

    CAS  PubMed  Google Scholar 

  • Mazzucato A, Olimpieri I, Ciampolini F, Cresti M, Soressi GP (2003) A defective pollen-pistil interaction contributes to hamper seed set in the parthenocarpic fruit tomato mutant. Sex Plant Reprod 16:157–164

    Article  Google Scholar 

  • Mazzucato A, Olimpieri I, Siligato F, Picarella ME, Soressi GP (2008) Characterization of genes controlling stamen identity and development in a parthenocarpic tomato mutant indicates a role for the DEFICIENS ortholog in the control of fruit set. Physiol Plant 132:526–537

    Article  CAS  PubMed  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minoia S, Petrozza A, D’Onofrio O, Piron F, Mosca G, Sozio G, Cellini F, Bendahmane A, Carriero F (2010) A new mutant genetic resource for tomato crop improvement by TILLING technology. BMC Res Notes 3:69

    Article  PubMed Central  PubMed  Google Scholar 

  • Molesini B, Pandolfini T, Rotino GL, Dani V, Spena A (2009) Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiol 149:534–548

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: predicting amino acid changes that affect protein function. Nucl Acid Res 31:3812–3814

    Article  CAS  Google Scholar 

  • Nuez F, Costa J, Cuartero J (1986) Genetics of the parthenocarpy for tomato varieties ‘Sub-Arctic Plenty’ 75/59’ and ‘Severianin’. Z Pflanzenzuchtg 96:200–206

    Google Scholar 

  • Olimpieri I, Mazzucato A (2008) Phenotypic and genetic characterization of the pistillate mutation in tomato. Theor Appl Genet 118:151–163

    Article  CAS  PubMed  Google Scholar 

  • Olimpieri I, Siligato F, Caccia R, Soressi GP, Mariotti L, Ceccarelli N, Mazzucato A (2007) Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta 226:877–888

    Article  CAS  PubMed  Google Scholar 

  • Ottenschlager I, Wolff P, Wolverton C, Bhalerao RP, Sandberg G et al (2003) Gravity regulated differential auxin transport from columella to lateral root cap cells. Proc Natl Acad Sci USA 100:2987–2991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17:3282–3300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Philouze J, Buret M, Duprat F, Nicolas-Grotte M, Nicolas J (1988) Caractéristiques agronomiques et physico-chimiques de lignées de tomates isogéniques, sauf pour le gène pat-2 de parthénocarpie, dans trois types variétaux, en culture de printemps, sous serre plastique très peu chauffée. Agronomie 8:817–828

    Article  Google Scholar 

  • Reed J (2001) Roles and activities of Aux/IAA proteins in arabidopsis. Trends Plant Sci 6:420–425

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, Li Z, Miao Q, Yang Y, Deng W et al (2011) The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J Exp Bot 62:2815–2826

    Article  CAS  PubMed  Google Scholar 

  • Ruan YL, Patrick JW, Bouzayen M, Osorio S, Fernie AR (2012) Molecular regulation of seed and fruit set. Trends Plant Science 17:656–665

    Article  CAS  Google Scholar 

  • Saito T, Ariizumi T, Okabe Y, Asamizu E, Hiwasa-Tanase K, Fukuda N, Mizoguchi T, Yamazaki Y, Aoki K, Ezura H (2011) TOMATOMA: a novel tomato mutant database distributing Micro-Tom mutant collections. Plant Cell Physiol 52:283–296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santangelo E, Benedettelli S, Tomassini C, Soressi GP (1990) Comportamento in tunnel freddo delle versioni, quasi isogeniche, normale e partenocarpica di tre ibridi di pomodoro. Colture Protette 11:81–90

  • SAS Institute (2004) SAS language and procedure: usage, version 8.1. SAS Institute Inc, Cary, NC

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  CAS  PubMed  Google Scholar 

  • Srivastava A, Handa A (2005) Hormonal regulation of tomato fruit development: a molecular perspective. J Plant Growth Regul 24:67–82

    Article  CAS  Google Scholar 

  • Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A (2007) Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J 51:1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Tsai W-C, Lee PF, Chen HI, Hsiao Y-Y, Wei W-J, Pan Z-J, Chuang M-H, Kuoh C-S, Chen W-H, Chen H-H (2005) PeMADS6, a GLOBOSA/PISTILLATA-like gene in Phalaenopsis equestris involved in petaloid formation, and correlated with flower longevity and ovary development. Plant Cell Physiol 46:1125–1139

    Article  CAS  PubMed  Google Scholar 

  • Ulmasov T, Murfett J, Hagen G, Guilfoyle T (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol 177:60–76

    CAS  PubMed  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech J-C, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang H, Schauer N, Usadel B, Frasse P, Zouine M, Hernould M, Latche A, Pech J-C, Fernie AR, Bouzayen M (2009) Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21:1428–1452

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weigel D, Meyerowitz E (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  CAS  PubMed  Google Scholar 

  • Yao J-L, Dong Y-H, Morris B (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang J, Chen R, Xiao J, Qian C, Wang T, Li H, Ouyang B, Ye Z (2007) A single-base deletion mutation in SlIAA9 gene causes tomato (Solanum lycopersicum) entire mutant. J Plant Res 120:671–678

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Italian Ministry of University and Research (MIUR, ITALYCO Project, DD no 603/RIC). The authors thank Rinaldo Botondi for help with the measurement of firmness, Pietro Mosconi and Luigi Selleri for help with mutant phenotyping and Loredana Lanzillotti for hosting the field trial at Azienda Gaudiano-ALSIA in Lavello (Pz).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filomena Carriero.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Supplementary material 2 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazzucato, A., Cellini, F., Bouzayen, M. et al. A TILLING allele of the tomato Aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes. Mol Breeding 35, 22 (2015). https://doi.org/10.1007/s11032-015-0222-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0222-8

Keywords

Navigation