Skip to main content
Log in

Meta-QTLs, ortho-MQTLs, and candidate genes for thermotolerance in wheat (Triticum aestivum L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Meta-QTL analysis for thermotolerance in wheat was conducted to identify robust meta-QTLs (MQTLs). In this study, 441 QTLs related to 31 heat-responsive traits were projected on the consensus map with 50,310 markers. This exercise resulted in the identification of 85 MQTLs with confidence interval (CI) ranging from 0.11 to 34.9 cM with an average of 5.6 cM. This amounted to a 2.96-fold reduction relative to the mean CI (16.5 cM) of the QTLs used. Seventy-seven (77) of these MQTLs were also compared and verified with the results of recent genome-wide association studies (GWAS). The 85 MQTLs included seven MQTLs that are particularly useful for breeding purposes (we called them breeders’ MQTLs). Seven ortho-MQTLs between wheat and rice genomes were also identified using synteny and collinearity. The MQTLs were used for the identification of 1,704 candidate genes (CGs). In silico expression analysis of these CGs permitted identification of 182 differentially expressed genes (DEGs), which included 36 high confidence CGs with known functions previously reported to be important for thermotolerance. These high confidence CGs encoded proteins belonging to the following families: protein kinase, WD40 repeat, glycosyltransferase, ribosomal protein, SNARE associated Golgi protein, GDSL lipase/esterase, SANT/Myb domain, K homology domain, etc. Thus, the present study resulted in the identification of MQTLs (including breeders’ MQTLs), ortho-MQTLs, and underlying CGs, which could prove useful not only for molecular breeding for the development of thermotolerant wheat cultivars but also for future studies focused on understanding the molecular basis of thermotolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Relevant data are included in this paper and its associated Supplementary Information (SI).

Code availability

Not applicable.

References

  • Acuña-Galindo MA, Mason RE, Subramanian NK, Hays DB (2015) Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Sci 55:477–492

    Article  Google Scholar 

  • Aduragbemi A, Soriano JM (2021) Unravelling consensus genomic regions conferring leaf rust resistance in wheat via meta-QTL analysis. bioRxiv. https://doi.org/10.1101/2021.05.11.443557

  • Agarwal P, Khurana P (2018) Characterization of a novel zinc finger transcription factor (TaZnF) from wheat conferring thermotolerance in Arabidopsis. Cell Stress Chaperones 23:253–267

    Article  CAS  PubMed  Google Scholar 

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice wheat and maize chromosomes. Mol Gen Genet 241:483–490

    Article  CAS  PubMed  Google Scholar 

  • Akter N, Rafiqul Islam M (2017) Heat stress effects and management in wheat. A Review Agron Sustain Dev 37:37

    Article  Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Asseng S, Foster IAN, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Change Biol 17:997–1012

    Article  Google Scholar 

  • Barkley A, Tack J, Nalley LL, Bergtold J, Bowden R, Fritz A (2014) Weather disease and wheat breeding effects on Kansas wheat varietal yields 1985 to 2011. Agron J 106:227–235

    Article  Google Scholar 

  • Beecher FW, Mason E, Mondal S, Awika J, Hays D, Ibrahim A (2012) Identification of quantitative trait loci (QTLs) associated with maintenance of wheat (Triticum aestivum L.) quality characteristics under heat stress conditions. Euphytica 188:361–368

    Article  CAS  Google Scholar 

  • Bheemanahalli R, Sunoj VJ, Saripalli G, Prasad PV, Balyan HS, Gupta PK, Grant N, Gill KS, Krishna Jagdish SV (2019) Quantifying the impact of heat stress on pollen germination seed set and grain filling in spring wheat. Crop Sci 59:684–696

    Article  CAS  Google Scholar 

  • Bilgrami SS, Ramandi HD, Shariati V, Razavi K, Tavakol E, Fakheri BA, Nezhad NM, Ghaderian M (2020) Detection of genomic regions associated with tiller number in iranian bread wheat under different water regimes using genome-wide association study. Sci Rep 10:1–17

    Article  Google Scholar 

  • Cai J, Wang S, Su Z, Li T, Zhang X, Bai G (2019) Meta-analysis of QTL for fusarium head blight resistance in Chinese wheat landraces. Crop J 7:784–798

    Article  Google Scholar 

  • Campbell JL, Natalya Y, Hong-gang ZK, Jorge NS, T-HD H, Henry TN, (2001) Cloning of new members of heat shock protein HSP101 gene family in wheat (Triticum aestivum (L.) Moench) inducible by heat dehydration and ABA. Biochim Biophys Acta 15172:270–277

    Article  Google Scholar 

  • Chardon F, Virlon B, Moreau L, Falque M, Joets J, Decousset L, Murigneux A, Charcosset A (2004) Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168:2169–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chauhan BS, Prabhjyot K, Mahajan G, Randhawa RK, Singh H, Kang MS (2014) Global warming and its possible impact on agriculture in India. Adv Agron 123:65–121

    Article  Google Scholar 

  • Chen G, Zou Y, Hu J, Ding Y (2018) Genome-wide analysis of the rice PPR gene family and their expression profiles under different stress treatments. BMC Genomics 19:1–14

    Article  Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27:125–132

    Article  CAS  PubMed  Google Scholar 

  • De Costa WAJM (2011) A review of the possible impacts of climate change on forests in the humid tropics. J Natl Sci Found Sri 39:281–302

    Google Scholar 

  • Djanaguiraman M, Narayanan S, Erdayani E (2020) Effects of high temperature stress during anthesis and grain filling periods on photosynthesis lipids and grain yield in wheat. BMC Plant Biol 20:268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong NQ, Sun Y, Guo T, Shi CL, Zhang YM, Kan Y, Xiang YH, Zhang H, Yang YB, Li YC, Zhao HY (2020) UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice. Nat Commun 11:1–16

    Article  CAS  Google Scholar 

  • Endelman JB, Plomion C (2014) LPmerge: an R package for merging genetic maps by linear programming. Bioinformatics 30:1623–1624

    Article  CAS  PubMed  Google Scholar 

  • Escobar GML, Marttila S, Håkansson G, Forsberg J, Knorpp C (2001) Heat stress response in pea involves interaction of mitochondrial nucleoside diphosphate kinase with a novel 86-kilodalton protein. Plant Physiol 126:69–77

    Article  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17:256–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan Q, Wen C, Zeng H, Zhu J (2013) A KH domain-containing putative RNA-binding protein is critical for heat stress-responsive gene regulation and thermo-tolerance in Arabidopsis. Mol Plant 6:386–395

    Article  CAS  PubMed  Google Scholar 

  • Guérin C, Mouzeyar S, Roche J (2021) The landscape of the genomic distribution and the expression of the F-Box genes unveil genome plasticity in hexaploid wheat during grain development and in response to heat and drought stress. Int J Mol Sci 22:3111

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo B, Sleper DA, Lu P, Shannon JG, Nguyen HT, Arelli PR (2006) QTLs associated with resistance to soybean cyst nematode in soybean meta-analysis of QTL locations. Crop Sci 46:202–202

    Article  Google Scholar 

  • Guo J, Dai S, Li H, Liu A, Liu C, Cheng D, Cao X, Chu X, Zhai S, Liu J, Zhao Z (2018) Identification and expression analysis of wheat TaGF14 genes. Front Genet 9:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Balyan HS, Kulwal P, Gahlaut V (2012) Phenotyping genetic dissection and breeding for tolerance to drought and heat in common wheat: present status and future prospects. Plant Breed Rev 36:82–168

    Google Scholar 

  • Gupta PK, Balyan HS, Sharma S, Kumar R (2020) Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor Appl Genet 133:1569–1602

    Article  PubMed  Google Scholar 

  • Jacott CN, Boden SA (2020) Feeling the heat: developmental and molecular responses of wheat and barley to high ambient temperatures. J Exp Bot 71:5740–5751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jagdish SVK (2020) Heat stress during flowering in cereals–effects and adaptation strategies. New Phytol 226:1567–1572

    Article  Google Scholar 

  • Jan I, Saripalli G, Kumar K, Kumar A, Singh R, Batra R, Sharma PK, Balyan HS, Gupta PK (2021) Meta-QTL analysis for stripe rust resistance in wheat. Res Square. https://doi.org/10.21203/rs.3.rs-380807/v1

  • Khahani B, Tavakol E, Shariati V, Fornara F (2020) Genome wide screening and comparative genome analysis for meta-QTLs ortho-MQTLs and candidate genes controlling yield and yield-related traits in rice. BMC Genomics 21:1–24

    Article  Google Scholar 

  • Khahani B, Tavakol E, Shariati V, Rossini L (2021) Meta-QTL and ortho-MQTL analyses identified genomic regions controlling rice yield yield-related traits and root architecture under water deficit conditions. Sci Rep 11:1–18

    Article  Google Scholar 

  • Kristensen K, Schelde K, Olesen JE (2011) Winter wheat yield response to climate variability in Denmark. J Agric Sci 149:33–47

    Article  Google Scholar 

  • Kumar A, Saripalli G, Jan I, Kumar K, Sharma PK, Balyan HS, Gupta PK (2020) Meta-QTL analysis and identification of candidate genes for drought tolerance in bread wheat (Triticum aestivum L.). Physiol Mol Biol Plants 26:1713–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar RR, Dubey K, Arora K, Dalal M, Rai GK, Mishra D, Chaturvedi KK, Rai A, Kumar SN, Singh B, Chinnusamy V (2021) Characterizing the putative mitogen-activated protein kinase (MAPK) and their protective role in oxidative stress tolerance and carbon assimilation in wheat under terminal heat stress. Biotechnol Rep 29:00597

    Google Scholar 

  • Kumar RR, Singh GP, Sharma SK, Singh K, Goswami S, Rai RD (2012) Molecular cloning of HSP17 gene (sHSP) and their differential expression under exogenous putrescine and heat shock in wheat (Triticum aestivum). Afr J Biotechnol 11:16800–16808

    CAS  Google Scholar 

  • Kumar S, Mohan A, Balyan HS, Gupta PK (2009) Orthology between genomes of brachypodium wheat and rice. BMC Res Notes 2:1–9

    Article  CAS  Google Scholar 

  • Kwon C, Lee JH, Yun HS (2020) SNAREs in plant biotic and abiotic stress responses. Mol Cells 43:501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee KC, Jang YH, Kim SK, Park HY, Thu MP, Lee JH, Kim JK (2017) RRM domain of Arabidopsis splicing factor SF1 is important for pre-mRNA splicing of a specific set of genes. Plant Cell Rep 36:1083–1095

    Article  CAS  PubMed  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  Google Scholar 

  • Liu H, Mullan D, Zhang C, Zhao S, Li X, Zhang A, Lu Z, Wang Y, Yan G (2020) Major genomic regions responsible for wheat yield and its components as revealed by meta-QTL and genotype–phenotype association analyses. Planta 252:1–22

    Article  Google Scholar 

  • Liu S, Hall MD, Griffey CA, Mckendry AL (2009) Meta-analysis of QTL associated with fusarium head blight resistance in wheat. Crop Sci 49:1955–1968

    Article  CAS  Google Scholar 

  • Liu Z, Xin M, Qin J, Peng H, Ni Z, Yao Y, Sun Q (2015) Temporal transcriptome profiling reveals expression partitioning of homeologous genes contributing to heat and drought acclimation in wheat (Triticum aestivum L.). BMC Plant Biol 15:1–20

    Article  Google Scholar 

  • Lu Q, Liu H, Hong Y, Li H, Liu H, Li X, Wen S, Zhou G, Li S, Chen X, Liang X (2018) Consensus map integration and QTL meta-analysis narrowed a locus for yield traits to 0.7 cM and refined a region for late leaf spot resistance traits to 0.38 cM on linkage group A05 in peanut (Arachis hypogaea L.). BMC Genomics 19:887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K (2015) A high-density SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13:648–663

    Article  CAS  PubMed  Google Scholar 

  • Mao SL, Wei YM, Cao W, Lan XJ, Yu M, Chen ZM, Chen GY, Zheng YL (2010) Confirmation of the relationship between plant height and Fusarium head blight resistance in wheat (Triticum aestivum L.) by QTL meta-analysis. Euphytica 174:343–356

    Article  Google Scholar 

  • Marone D, Russo MA, Laidò G, Vita PD, Papa R, Blanco A, Gadaleta A, Rubiales D, Mastrangelo AM (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics 14:562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason RE, Mondal S, Beecher FW, Pacheco A, Jampala B, Ibrahim AM, Hays DB (2010) QTL associated with heat susceptibility index in wheat (Triticum aestivum L.) under short-term reproductive stage heat stress. Euphytica 174:423–436

    Article  Google Scholar 

  • Mishkind M, Vermeer JE, Darwish E, Munnik T (2009) Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J 60:10–21

    Article  CAS  PubMed  Google Scholar 

  • Pandian BA, Sathishraj R, Djanaguiraman M, Prasad PV, Jugulam M (2020) Role of cytochrome P450 enzymes in plant stress response. Antioxidants 9:454

    Article  CAS  PubMed Central  Google Scholar 

  • Park S, Moon JC, Park YC, Kim JH, Kim DS, Jang CS (2014) Molecular dissection of the response of a rice leucine-rich repeat receptor-like kinase (LRR-RLK) gene to abiotic stresses. J Plant Physiol 171:1645–1653

    Article  CAS  PubMed  Google Scholar 

  • Poudel PB, Poudel MR (2020) Heat stress effects and tolerance in wheat: a review. J Biol Today’s World 9:217

    CAS  Google Scholar 

  • Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, Confolent C, Bortolini F, Praud S, Murigneux A, Charmet G (2009) Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics 9:473–484

    Article  CAS  PubMed  Google Scholar 

  • Quraishi UM, Murat F, Abrouk M, Pont C, Confolent C, Oury FX, Ward J, Boros D, Gebruers K, Delcour JA, Courtin CM (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genomics 11:71–83

    Article  CAS  PubMed  Google Scholar 

  • Quraishi UM, Pont C, Ain QU, Flores R, Burlot L, Alaux M, Quesneville H, Salse J (2017) Combined genomic and genetic data integration of major agronomical traits in bread wheat (Triticum aestivum L.). Front Plant Sci 8:1843

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramalingam J, Pathan MS, Feril O, Miftahudin M, Ross K, Ma XF, Mahmoud AA, Layton J, Rodriguez MA, Chikmawati T, Valliyoda B (2006) Structural and functional analyses of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genomics 49:1324–1340

    CAS  Google Scholar 

  • Ramandi DH, Shariati JV, Tavakol E, Zarini NH, Bilgrami SS, Razavi K (2017) Detection of consensus genomic regions associated with root architecture of bread wheat on groups 2 and 3 chromosomes using QTL meta-analysis. Aust J Crop Sci 11:777–785

    Article  Google Scholar 

  • Ramírez-González RH, Borrill P, Lang D, Harrington SA, Brinton J, Venturini L, Davey M, Jacobs J, Van Ex F, Pasha A, Khedikar Y et al (2018) The transcriptional landscape of polyploid wheat. Science 361:6403

    Article  Google Scholar 

  • Raza Q, Riaz A, Bashir K, Sabar M (2020) Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. Plant Mol Biol 104:97–112

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Huang Z, Jiang H, Wang Z, Wu F, Xiong Y, Yao J (2021) A heat stress responsive NAC transcription factor heterodimer plays key roles in rice grain filling. J Exp Bot 72:2947–2964

    Article  CAS  PubMed  Google Scholar 

  • Safdar LB, Andleeb T, Latif S, Umer MJ, Tang M, Li X, Liu S, Quraishi UM (2020) Genome-wide association study and QTL meta-analysis identified novel genomic loci controlling potassium use efficiency and agronomic traits in bread wheat. Front Plant Sci 11:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Saini DK, Srivastava P, Pal N, Gupta PK (2021) Meta-QTLs Ortho-Meta-QTLs and candidate genes for grain yield and associated traits in wheat (Triticum aestivum L.). Res Square. https://doi.org/10.21203/rs.3.rs-430452/v1

  • Shariatipour N, Heidari B, Richards CM (2021) Meta-analysis of QTLome for grain zinc and iron contents in wheat (Triticum aestivum L.). Euphytica 217:1–14

    Article  Google Scholar 

  • Sharma DK, Torp AM, Rosenqvist E, Ottosen CO, Andersen SB (2017) QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for Fv/Fm in wheat. Front Plant Sci 8:1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Ruan Q, Chai H, Yuan Y, Yang W, Chen J, Xin Z, Shi H (2016) The Arabidopsis polyamine transporter LHR 1/PUT 3 modulates heat responsive gene expression by enhancing mRNA stability. Plant J 88:1006–1021

    Article  CAS  PubMed  Google Scholar 

  • Shirdelmoghanloo H, Taylor JD, Lohraseb I, Rabie H, Brien C, Timmins A, Martin P, Mather DE, Emebiri L, Collins NC (2016) A QTL on the short arm of wheat (Triticum aestivum L.) chromosome 3B affects the stability of grain weight in plants exposed to a brief heat shock early in grain filling. BMC Plant Biol 16:1–15

    Article  Google Scholar 

  • Singh K, Batra R, Sharma S, Saripalli G, Gautam T, Singh R, Pal S, Malik P, Kumar M, Jan I, Singh S et al (2021) WheatQTLdb: a QTL database for wheat. Mol Genet Genomics 2965:1051–1056

    Article  Google Scholar 

  • Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Soriano JM, Alvaro F (2019) Discovering consensus genomic regions in wheat for root-related traits by QTL meta-analysis. Sci Rep 9:1–14

    Article  Google Scholar 

  • Soriano JM, Royo C (2015) Dissecting the genetic architecture of leaf rust resistance in wheat by QTL meta-analysis. Phytopathology 105:1585–1593

    Article  CAS  PubMed  Google Scholar 

  • Sosnowski O, Charcosset A, Joets J (2012) BioMercator V3: an upgrade of genetic map compilation and quantitative trait loci meta-analysis algorithms. Bioinformatics 28:2082–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai L, Wang HJ, Xu XJ, Sun WH, Ju L, Liu WT, Chen KM (2021) Cereal pre-harvest sprouting: a global agricultural disaster regulated by complex genetic and biochemical mechanisms. J Exp Bot 72:2857–2876

    Article  CAS  PubMed  Google Scholar 

  • Tyagi S, Gupta PK (2012) Meta-analysis of QTLs involved in pre-harvest sprouting tolerance and dormancy in bread wheat. Triticeae Genomics Genet 3:1

    Google Scholar 

  • Venske E, Santos RSD, Farias DDR, Rother V, Maia LCD, Pegoraro C, Oliveira ACD (2019) Meta-analysis of the QTLome of fusarium head blight resistance in bread wheat: Refining the current puzzle. Front Plant Sci 10:727

    Article  PubMed  PubMed Central  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:1–16

    Article  Google Scholar 

  • Vishwakarma H, Junaid A, Manjhi J, Singh GP, Gaikwad K, Padaria JC (2018) Heat stress transcripts differential expression and profiling of heat stress tolerant gene TaHsp90 in Indian wheat (Triticum aestivum L.) cv C306. PloS one 13:0198293

    Article  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM (2014) Characterization of polyploid wheat genomic diversity using a high density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue GP, Drenth J, Mcintyre CL (2015) TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. J Exp Bot 66:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Amo A, Wei D, Chai Y, Zheng J, Qiao P, Cui C, Lu S, Chen L, Hu YG (2021) Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theor Appl Genet 1–27

  • Ye Q, Yu J, Zhang Z, Hou L, Liu X (2020) VvBAP1 a grape C2 domain protein plays a positive regulatory role under heat stress. Front Plant Sci 11

  • Yu Q, Li L, Luo Q, Eamus D, Xu S, Chen C (2014) Year patterns of climate impact on wheat yields. Int J Climatol 34:518–528

    Article  Google Scholar 

  • Zampieri M, Ceglar A, Dentener F, Toreti A (2017) Wheat yield loss attributable to heat waves drought and water excess at the global national and subnational scales. Environ Res Lett 12:6

    Article  Google Scholar 

  • Zang X, Geng X, He K, Wang F, Tian X, Xin M, Yao Y, Hu Z, Ni Z, Sun Q, Peng H (2018) Overexpression of the wheat (Triticum aestivum L.) TaPEPKR2 gene enhances heat and dehydration tolerance in both wheat and Arabidopsis. Front Plant Sci 9:1710

    Article  PubMed  PubMed Central  Google Scholar 

  • Zang X, Geng X, Wang F, Liu Z, Zhang L, Zhao Y, Tian X, Ni Z, Yao Y, Xin M, Hu Z, Sun Q, Peng H (2017) Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol 17:1–13

    Article  Google Scholar 

  • Zaveri E, Lobell DB (2019) The role of irrigation in changing wheat yields and heat sensitivity in India. Nat Commun 10:1–7

    Article  Google Scholar 

  • Zhao Y, Tian X, Wang F, Zhang L, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H (2017) Characterization of wheat MYB genes responsive to high temperatures. BMC Plant Biol 17:1–14

    Article  CAS  Google Scholar 

  • Zheng T, Hua C, Li L, Sun Z, Yuan M, Bai G, Humphreys G, Li T (2020) Integration of meta-QTL discovery with omics: towards a molecular breeding platform for improving wheat resistance to Fusarium head blight. Crop J 9:739–749

    Article  Google Scholar 

  • Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, Oliveira RD, Choulet F, Keeble Gagnère GK, Tibbits J, Rogers J, Eversole K, Appels R, Gu YQ, Mascher M, Dvorak J, Luo MC (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. Plant J 107:303–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Biotechnology Industry Research Assistance Council (BIRAC), Government of India, New Delhi and United States Agency for International Development (USAID), USA. HSB was awarded Honorary Scientist position by the Indian National Science Academy (INSA), New Delhi during the course of this study. The Head, Department of Genetics and Plant Breeding, Ch. Charan Singh University, Meerut provided necessary facilities for this study.

Funding

This research was funded by the “Biotechnology Industry Research Assistance Council (BIRAC), Government of India, New Delhi” and “United States Agency for International Development (USAID), USA” (Grant No. BIRAC/TG/USAID/08/2014).

Author information

Authors and Affiliations

Authors

Contributions

SK, HSB, and PKG planned this study. SoK, VPS, DKS, HS, and SGM performed the literature search, retrieved data, developed consensus map, conducted meta-analysis, and wrote the first draft of the manuscript. SK, HSB, and PKG critically revised and edited the manuscript. All authors have read and agree to the final version of the manuscript.

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 2015 KB)

Supplementary file2 (DOCX 2218 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Singh, V.P., Saini, D.K. et al. Meta-QTLs, ortho-MQTLs, and candidate genes for thermotolerance in wheat (Triticum aestivum L.). Mol Breeding 41, 69 (2021). https://doi.org/10.1007/s11032-021-01264-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-021-01264-7

Keywords

Navigation