Skip to main content
Log in

Elucidation of the relationship between yield and heading date using CRISPR/Cas9 system-induced mutation in the flowering pathway across a large latitudinal gradient

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The naturally occurring genetic variation in the universal flowering (or heading date in crops) pathway has produced major advancements in crop domestication and expansion, and the various combinations of heading date genes have facilitated the plants to heading at suitable times in different ecological zones. However, gene combinations that can maximize crop yields may not exist in natural populations. Here, we planted a series of heading date mutants that harbored different heading mutant gene combinations generated by CRISPR/Cas9 gene editing technology, along with a collection of commercial varieties, across a large latitude gradient to evaluate the major effects of heading date genes and preferable gene combinations for each area. The relationship between yield and heading date was investigated. According to the pattern obtained from gene editing mutants, we concluded that the growth period of commercial varieties could be adjusted to achieve maximum yield performance in some areas. By combining the long vegetative growth allele and weak photoperiod sensitivity allele, we pinpointed an optimal balance between growth period and yield production, resulting in new partially determinate heading date to maximum yields and improved adaptability. We propose that harnessing mutations in the florigen pathway to customize the balance between vegetative and reproductive growth offers a broad toolkit for boosting crop productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article and its additional files. The seeds of mutants and varieties are available from the corresponding author on reasonable request.

References

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19(9):1655–1664. https://doi.org/10.1101/gr.094052.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Zhu M, Xu Z, Xu Q (2019) Assessment of the effect of ten heading time genes on reproductive transition and yield components in rice using a CRISPR/Cas9 system. Theor Appl Genet 132(6):1887–1896

    Article  CAS  Google Scholar 

  • Deng N, Grassini P, Yang H, Huang J, Cassman KG, Peng S (2019) Closing yield gaps for rice self-sufficiency in China. Nat Commun 10(1):1725. https://doi.org/10.1038/s41467-019-09447-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127(7):1309–1321

    Article  CAS  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18(8):926–936

    Article  CAS  Google Scholar 

  • Du A, Tian W, Wei M, Yan W, He H, Zhou D, Huang X, Li S, Ouyang X (2017) The DTH8-Hd1 module mediates day-length-dependent regulation of rice flowering. Mol Plant 10(7):948–961. https://doi.org/10.1016/j.molp.2017.05.006

    Article  CAS  PubMed  Google Scholar 

  • Endo-Higashi N, Izawa T (2011) Flowering time genes heading date 1 and early heading date 1 together control panicle development in rice. Plant Cell Physiol 52(6):1083–1094

    Article  CAS  Google Scholar 

  • Fang J, Zhang F, Wang H, Wang W, Zhao F, Li Z, Sun C, Chen F, Xu F, Chang S, Wu L, Bu Q, Wang P, Xie J, Huang X, Zhang Y, Zhu X, Han B, Deng X, Chu C (2019) Ef-cd locus shortens rice maturity duration without yield penalty. Proc Natl Acad Sci U S A 116(37):18717–18722. https://doi.org/10.1073/pnas.1815030116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2(4):618–620

    Article  Google Scholar 

  • Hosoi N (1981) Studies on meteorological fluctuation in the growth of rice plants. V. Regional differences of thermo-sensitivity, photosensitivity, basic vegetative growth and factors determining the growth duration of Japanese varieties. Jpn J Breed 31:239–250

  • Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832

    Article  CAS  Google Scholar 

  • Ishikawa R, Aoki M, Kurotani K, Yokoi S, Shinomura T, Takano M, Shimamoto K (2011) Phytochrome B regulates heading date 1 (Hd1)-mediated expression of rice florigen Hd3a and critical day length in rice. Mol Genet Genomics 285(6):461–470. https://doi.org/10.1007/s00438-011-0621-4

    Article  CAS  PubMed  Google Scholar 

  • Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K (2000) Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J 22(5):391–399. https://doi.org/10.1046/j.1365-313x.2000.00753.x

    Article  CAS  PubMed  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Molecular Biology 35:25–34

    Article  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. https://doi.org/10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  CAS  Google Scholar 

  • Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J (2017) A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 170(1):114–126

    Article  CAS  Google Scholar 

  • Li X, Wu L, Wang J, Sun J, Xia X, Geng X, Wang X, Xu Z, Xu Q (2018) Genome sequencing of rice subspecies and genetic analysis of recombinant lines reveals regional yield- and quality-associated loci. BMC Biol 16(1):102. https://doi.org/10.1186/s12915-018-0572-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma X, Zhang Q, Zhu Q, Liu W, Chen Y, Qiu R, Wang B, Yang Z, Li H, Lin Y (2015) A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants. Mol Plant 8(8):1274–1284

    Article  CAS  Google Scholar 

  • Monfreda C, Ramankutty N, Foley JA (2008) Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob Biogeochem Cycles 22(1):GB1022

    Article  Google Scholar 

  • Nishimura A, Aichi I, Matsuoka M (2006) A protocol for Agrobacterium-mediated transformation in rice. Nature Protocols 1(6):2796–2802

    Article  CAS  Google Scholar 

  • Park SJ, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman ZB (2014) Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet 46(12):1337–1342

    Article  CAS  Google Scholar 

  • Saito H, Okumoto Y, Yoshitake Y, Inoue H, Yuan Q, Teraishi M, Tsukiyama T, Nishida H, Tanisaka T (2011) Complete loss of photoperiodic response in the rice mutant line X61 is caused by deficiency of phytochrome chromophore biosynthesis gene. Theor Appl Genet 122(1):109–118

    Article  CAS  Google Scholar 

  • Saito H, Ogiso-Tanaka E, Okumoto Y, Yoshitake Y, Izumi H, Yokoo T, Matsubara K, Hori K, Yano M, Inoue H, Tanisaka T (2012) Ef7 encodes an ELF3-like protein and promotes rice flowering by negatively regulating the floral repressor gene Ghd7 under both short- and long-day conditions. Plant Cell Physiol 53(4):717–728. https://doi.org/10.1093/pcp/pcs029

    Article  CAS  PubMed  Google Scholar 

  • Sudhir K, Glen S, Koichiro T (2016) MEGA7: Molecular evolutionary genetics analysis Version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  Google Scholar 

  • Takahashi Y, Teshima KM, Yokoi S, Innan H, Shimamoto K (2009) Variations in Hd1 proteins, Hd3a promoters, and Ehd1 expression levels contribute to diversity of flowering time in cultivated rice. Proc Natl Acad Sci 106(11):4555–4560

    Article  CAS  Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316(5827):1033–1036

    Article  CAS  Google Scholar 

  • Tanisaka T, Inoue H, Uozu S, Yamagata H (1992) Basic vegetative growth and photoperiod sensitivity of heading-time mutants induced in rice. Jpn J Breed 42:657–668

  • Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153(4):1747–1758

    Article  CAS  Google Scholar 

  • Xu Q, Saito H, Hirose I, Katsura K, Yoshitake Y, Yokoo T, Tsukiyama T, Teraishi M, Tanisaka T, Okumoto Y (2014) The effects of the photoperiod-insensitive alleles, se13, hd1 and ghd7, on yield components in rice. Mol Breed 33(4):813–819

    Article  CAS  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40(6):761–767

    Article  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12(12):2473–2484

    Article  CAS  Google Scholar 

  • Ye J, Niu X, Yang Y, Wang S, Xu Q, Yuan X, Yu H, Wang Y, Wang S, Feng Y (2018) DivergentHd1,Ghd7, and DTH7 alleles control heading date and yield potential of Japonica rice in Northeast China. Front Plant Sci 9:35

    Article  Google Scholar 

  • Yokoo T, Saito H, Yoshitake Y, Xu Q, Asami T, Tsukiyama T, Teraishi M, Okumoto Y, Tanisaka T (2014) Se14, encoding a JmjC domain-containing protein, plays key roles in long-day suppression of rice flowering through the demethylation of H3K4me3 of RFT1. PLoS One 9(4):e96064

    Article  Google Scholar 

  • Yoshitake Y, Yokoo T, Saito H, Tsukiyama T, Quan X, Zikihara K, Katsura H, Tokutomi S, Aboshi T, Mori N, Inoue H, Nishida H, Kohchi T, Teraishi M, Okumoto Y, Tanisaka T. (2015) The effects of phytochrome-mediated light signals on the developmental acquisition of photoperiod sensitivity in rice. Sci Rep 5:7709

  • Yuan Q, Saito H, Okumoto Y, Inoue H, Nishida H, Tsukiyama T, Teraishi M, Tanisaka T (2009) Identification of a novel gene ef7 conferring an extremely long basic vegetative growth phase in rice. Theor Appl Genet 119(4):675–684

    Article  CAS  Google Scholar 

  • Zhang J, Zhou X, Yan W, Zhang Z, Lu L, Han Z, Zhao H, Liu H, Song P, Hu Y (2015) Combinations of the Ghd7, Ghd8 and Hd1 genes largely define the ecogeographical adaptation and yield potential of cultivated rice. New Phytol 208(4):1056–1066

    Article  CAS  Google Scholar 

  • Zhang Z, Hu W, Shen G, Liu H, Hu Y, Zhou X, Liu T, Xing Y (2017) Alternative functions of Hd1 in repressing or promoting heading are determined by Ghd7 status under long-day conditions. Sci Rep 7(1):5388. https://doi.org/10.1038/s41598-017-05873-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Liu H, Qi F, Zhang Z, Xing Y (2019a) Genetic interactions among Ghd7, Ghd8, OsPRR37 and Hd1 contribute to large variation in heading date in rice. Rice 12:48

    Article  Google Scholar 

  • Zhang Z, Zhang B, Qi F, Wu H, Xing Y (2019b) Hd1 function conversion in regulating heading is dependent on gene combinations of Ghd7, Ghd8, and Ghd7.1 under long-day conditions in rice. Mol Breed 39(7):92

    Article  Google Scholar 

  • Zhao J, Chen H, Ren D, Tang H, Qiu R, Feng J, Long Y, Niu B, Chen D, Zhong T, Liu YG, Guo J (2015) Genetic interactions between diverged alleles of early heading date 1 (Ehd1) and heading date 3a (Hd3a)/rice flowering locus T1 (RFT1) control differential heading and contribute to regional adaptation in rice (Oryza sativa). New Phytol 208(3):936–948. https://doi.org/10.1111/nph.13503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Excellent Youth Science Foundation of Natural Science Foundation of Liaoning Province (2019-YQ-06), Innovative talents support program of Liaoning province (LCR2018026), and Shenyang youth science and technology project (RC200452) for supporting this study.

Funding

The Excellent Youth Science Foundation of Natural Science Foundation of Liaoning Province (2019-YQ-06), Innovative talents support program of Liaoning province (LCR2018026), and Shenyang youth science and technology project (RC200452) supported this study.

Author information

Authors and Affiliations

Authors

Contributions

QX and ZX conceived and designed the research. YC organized and performed most of the experiments. QX analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Quan Xu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PPTX 1664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Xu, Z. & Xu, Q. Elucidation of the relationship between yield and heading date using CRISPR/Cas9 system-induced mutation in the flowering pathway across a large latitudinal gradient. Mol Breeding 41, 23 (2021). https://doi.org/10.1007/s11032-021-01213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-021-01213-4

Keywords

Navigation