Skip to main content
Log in

Identification of a novel gene ef7 conferring an extremely long basic vegetative growth phase in rice

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

A late heading-time mutant line, HS276, which was induced by gamma-irradiation of seeds of the japonica rice (Oryza sativa L.) variety Gimbozu, exhibits an extremely long basic vegetative growth phase (BVP). A genetic analysis using the F2 population from the cross between HS276 and Gimbozu revealed that the late heading of HS276 is governed by a single recessive mutant gene. The subsequent analysis on heading responses of HS276 and Gimbozu to four photoperiods (12, 13, 14, and 15 h) and to the photoperiodic transfer treatment from a short photoperiod to a long photoperiod revealed that the mutant gene confers an extremely long BVP and increases photoperiod sensitivity under long photoperiod (14 and 15 h). The BVP durations of HS276 and Gimbozu were estimated at 30.1 and 16.0 days, respectively; the mutant gene, compared with its wild type allele, elongates the duration of BVP by 14 days. Linkage analysis showed that the mutant gene is located in the 129 kb region between the two INDEL markers, INDELAP0399_6 and INDELAP3487_2, on the distal part of the short arm of chromosome 6. None of the other BVP genes are located in this region; therefore, we declared this a newly detected mutant gene and designated it ef7. A recently established program to breed rice suitable for low latitudes, where short photoperiodic conditions continue throughout the year, aims to develop varieties with extremely long BVPs and weak photoperiod sensitivities; the mutant gene ef7, therefore, will be quite useful in these programs because it confers an extremely long BVP and little enhances photoperiod sensitivity under short photoperiod.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akagi H, Yokozeki Y, Inagaki A, Fujimura T (1997) Highly polymorphic microsatellites of rice consist of AT repeats, and a classification of closely related cultivars with these microsatellite loci. Theor Appl Genet 94:61–67

    Article  PubMed  CAS  Google Scholar 

  • Baurle I, Dean C (2006) The timing of developmental transitions in plants. Cell 125:655–664

    Article  PubMed  CAS  Google Scholar 

  • Chang TT, Vergara BS (1969) Component analysis of duration from seeding to heading in rice by the basic vegetative phase and the photoperiod-sensitive phase. Euphytica 18:79–91

    Google Scholar 

  • Doi K, Yoshimura A (1998) RFLP mapping of a gene for heading date in an African rice. Rice Genet Newslett 15:148–149

    Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    Article  PubMed  CAS  Google Scholar 

  • Ellis RH, Collinson ST, Hudson D, Patefield WM (1992) The analysis of reciprocal transfer experiments to estimate the durations of the photoperiod-sensitive and photoperiod-insensitive phases of plant development: an example in soya bean. Ann Bot 70:87–92

    Google Scholar 

  • Hayama R, Coupland G (2003) Shedding light on the circadian clock and the photoperiodic control of flowering. Curr Opin Plant Biol 6:13–19

    Article  PubMed  CAS  Google Scholar 

  • Hosoi N (1981) Studies on meteorological fluctuation in the growth of rice plants. V. Regional differences of thermo-sensitivity, photo-sensitivity, basic vegetative growth and factors determining the growth duration of Japanese varieties. Jpn J Breed 31:239–250

    Google Scholar 

  • Ichitani K, Okumoto Y, Tanisaka T (1998) Genetic analyses of low photoperiod sensitivity of rice cultivars from the northernmost regions of Japan. Plant Breed 117:543–547

    Article  Google Scholar 

  • Izawa T, Oikawa T, Sugiyama N, Tanisaka T, Yano M, Shimamoto K (2002) Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice. Genes Dev 16:2006–2020

    Article  PubMed  CAS  Google Scholar 

  • Khun LH, Hiraiwa M, Sato S, Motomura K, Murayama S, Adaniya S, Nose A, Ishimine Y (2004) Location of new gene for late heading in rice, Oryza sativa L. Using interchange homozygotes. Breed Sci 54:259–263

    Article  CAS  Google Scholar 

  • Khun LH, Motomura K, Murayama S, Adaniya S, Nose A (2005a) Linkage analysis of a lateness gene ef4 in rice, Oryza sativa L. Breed Sci 55:231–235

    Article  CAS  Google Scholar 

  • Khun LH, Motomura K, Murayama S, Adaniya S, Nose A (2005b) Trisomic analysis of a lateness gene ef2 in rice, Oryza sativa L. Breed Sci 55:35–39

    Article  CAS  Google Scholar 

  • Khun LH, Miyaji S, Motomura K, Murayama S, Adaniya S, Nose A (2006) Trisomic analysis of new gene for late heading in rice, Oryza sativa L. Euphytica 151:235–241

    Article  CAS  Google Scholar 

  • Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008) Hd3a and RFT1 are essential for flowering in rice. Development 135:767–774

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M, Peeters A (1997) Floral transition mutants in Arabidopsis. Plant Cell Environ 20:779–784

    Article  Google Scholar 

  • Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antonio BA, Shomura A, Shimizu T, Lin SY, Inoue T, Fukuda A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L, Zhong HS, Tamura Y, Wang ZX, Momma T, Umehara Y, Yano M, Sasaki T, Minobe Y (1994) A 300 kilobase interval genetic map of rice including 883 expressed sequences. Nat Genet 8:365–372

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Kim J, Han J-J, Han M-J, An G (2004) Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J 38:754–764

    Article  PubMed  CAS  Google Scholar 

  • Matsubara K, Yamanouchi U, Wang ZX, Minobe Y, Izawa T, Yano M (2008) Ehd2, a rice ortholog of the maize ID1 gene, promotes flowering by upregulating Ehd1. Plant Physiol. doi: 10.1104/pp.108.125542

  • McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–829

    Article  CAS  Google Scholar 

  • Monden Y, Naito K, Okumoto Y, Saito H, Oki N, Tsukiyama T, Ideta O, Nakazaki T, Wessler SR, Tanisaka T (2009) High potential of a transposon mPing as a marker system in japonica × japonica cross in rice. DNA Res. doi:10.1093/dnares/dsp004

  • Monna L, Lin H, Kojima S, Sasaki T, Yano M (2002) Genetic dissection of a genomic region for a quantitative trait locus, Hd3, into two loci, Hd3a and Hd3b, controlling heading date in rice. Theor Appl Genet 104:772–778

    Article  PubMed  CAS  Google Scholar 

  • Nishida H, Okumoto Y, Nakagawa H, Ichitani K, Inoue H, Tanisaka T (2001) Analysis of tester lines for rice (Oryza sativa L.) heading-time genes using reciprocal photoperiodic transfer treatments. Ann Bot 88:527–536

    Article  CAS  Google Scholar 

  • Nishida H, Inoue H, Okumoto Y, Tanisaka T (2002) A novel gene ef1-h conferring an extremely long basic vegetative growth period in rice. Crop Sci 42:348–354

    Google Scholar 

  • Okumoto Y, Tanisaka T (1997) Trisomic analysis of a strong photoperiod-sensitivity gene E1 in rice (Oryza sativa L.). Euphytica 95:301–307

    Article  Google Scholar 

  • Park SJ, Kim SL, Lee S, Je BI, Piao HL, Park SH, Kim CM, Ryu CH, Park SH, Xuan YH, Colasanti J, An G, Han CD (2008) Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. Plant J 56:1018–1029

    Article  PubMed  CAS  Google Scholar 

  • Poonyarit M, Mackill DJ, Vergara BS (1989) Genetics of photoperiod sensitivity and critical daylength in rice. Crop Sci 29:647–652

    Article  Google Scholar 

  • Reeves PH, Coupland G (2001) Analysis of flowering time control in Arabidopsis by comparison of double and triple mutants. Plant Physiol 126:1085–1091

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Yuan Q, Okumoto Y, Doi K, Yoshimura A, Inoue H, Teraishi M, Tsukiyama T, Tanisaka T (2009) Multiple alleles at Early flowering 1 locus making variation in the basic vegetative growth period in rice (Oryza sativa L.). Theor Appl Genet. doi:10.1007/s00122-009-1040-3

    Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Tanisaka T, Inoue H, Uozu S, Yamagata H (1992) Basic vegetative growth and photoperiod sensitivity of heading-time mutants induced in rice. Jpn J Breed 42:657–668

    Google Scholar 

  • Tsai KH (1986) Genes controlling heading time found in a tropical Japonica variety. Rice Genet Newslett 3:71–73

    Google Scholar 

  • Tsai KH (1991) Genes for late-heading and their interaction in the background of Taichung 65. Rice genetics II. Intern Rice Res Inst, Manila, pp 211–215

  • Wang S, Basten CJ, Zeng Z-B (2005) Windows QTL Cartographer 2.5. North Carolina State University, Raleigh. http://www.statgen.ncsu.edu/qtlcart/WQTLCart.html

  • Wu C, You C, Li C, Long T, Chen G, Byrne ME, Zhang Q (2008) RID1, encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice. PNAS 105(35):12915–12920

    Article  PubMed  CAS  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto T, Lin H, Sasaki T, Yano M (2000) Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny. Genetics 154:885–891

    PubMed  CAS  Google Scholar 

  • Yano M, Ebitani T (2002) Development of a series of chromosome segment substitution lines and their utilization in the genetic analysis of quantitative traits in rice. NIAS Ann Rep 27–28

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032

    Article  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, Is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Kropff MJ, Ynalvez MA (1997) Photoperiodically sensitive and insensitive phases of preflowering development in rice. Crop Sci 37:182–190

    Google Scholar 

  • Yokoo M, Kikuchi F (1992) The Lm locus controlling photoperiod sensitivity in rice differs from E1, E2 and E3 loci. Jpn J Breed 42:375–381 (In Japanese, with English abstract)

    Google Scholar 

Download references

Acknowledgments

We thank the Rice Genome Resource Center (RGRC) (Tsukuba, Japan) for providing the seeds of chromosome segment substitution lines. This work was supported by a grant from the Ministry of Agriculture, Forestry, and Fisheries of Japan (Integrated research project for plant, insect and animal using genome technology QTL-4001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takatoshi Tanisaka.

Additional information

Communicated by J. Snape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, Q., Saito, H., Okumoto, Y. et al. Identification of a novel gene ef7 conferring an extremely long basic vegetative growth phase in rice. Theor Appl Genet 119, 675–684 (2009). https://doi.org/10.1007/s00122-009-1078-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1078-2

Keywords

Navigation