Skip to main content
Log in

Fine-mapping of a major quantitative trait locus Qdff3-1 controlling flowering time in watermelon

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Flowering time is crucial in watermelon (Citrullus lanatus) production as it determines time of fruit set. Early flowering is desirable because it enables crops to escape biotic and abiotic stresses that are intensified by long production cycles. Production of seedless watermelon is also reliant on synchronized flowering of diploid pollenizers and the triploid watermelon cultivars. Utilizing marker-assisted selection (MAS) of flowering time in watermelon breeding would potentially aid in selection for early flowering, which would shorten the production time. A major quantitative trait locus Qdff3-1 (12–17 Mb) associated with days to female flower (R2 = 50%) was previously identified on chromosome 3 of watermelon. In this study, we validated the Qdff3-1 locus using QTL-seq. To determine more precisely the interval of Qdff3-1 and the candidate gene controlling flowering time, SNP markers were identified in the region and Kompetitive Allele Specific PCR (KASP) assays were developed for high-throughput genotyping. Markers were tested for trait association on the mapping population, recombinant F2:3 populations, and a panel of differential cultivars. In the KBS x NHM genetic background the QTL was delineated to a 1.13-Mb region, flanked by markers UGA3_14537958 and NW0248748. This region includes the FT and a protein phosphatase 2C (PP2C) gene. Genotyping the regions of interest in a panel of genetically diverse cultivars suggests that genetic control of flowering time in watermelon is dependent on the genetic background. These results lay the foundation for a greater understanding of flowering mechanisms in watermelon and improved breeding strategies for this trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adrian J, Farrona S, Reimer JJ, Albani MC, Coupland G, Turck F (2010) cis-Regulatory elements and chromatin state coordinately control temporal and spatial expression of FLOWERING LOCUS T in Arabidopsis. Plant Cell 22(5):1425–1440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25(3):605–614

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akhter S, Uddin MN, Jeong IS, Kim DW, Liu X-M, Bahk JD (2016) Role of Arabidopsis AtPI4Kγ3, a type II phosphoinositide 4-kinase, in abiotic stress responses and floral transition. Plant Biotechnol J 14(1):215–230

    CAS  PubMed  Google Scholar 

  • Andrews, S (2010) FastQC: a quality control tool for high throughput sequence data. 8 Feb 2017. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

  • Bohuon EJR, Ramsay LD, Craft JA, Arthur AE, Marshall DF, Lydiate DJ, Kearsey MJ (1998) The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea. Genetics 150(1):393–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castillejo C, Pelaz S (2008) The balance between CONSTANS and TEMPRANILLO activities determines FT expression to trigger flowering. Curr Biol 18(17):1338–1343

    CAS  PubMed  Google Scholar 

  • Clevenger J, Chu Y, Chavarro C, Botton S, Culbreath A, Isleib TG, Holbrook CC, Ozias-Akins P (2018) Mapping late leaf spot resistance in peanut (Arachis hypogaea) using QTL-seq reveals markers for marker-assisted selection. Front Plant Sci 9:83

    PubMed  PubMed Central  Google Scholar 

  • Das S, Upadhyaya HD, Bajaj D, Kujur A, Badoni S, Laxmi KV, Tripathi S, Gowda CL, Sharma S et al (2015) Deploying QTL-seq for rapid delineation of a potential candidate gene underlying major trait-associated QTL in chickpea. DNA Res 22(3):193–203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Wu D, Li G, Wu D, Wang Z (2018) Next-generation sequencing from bulked segregant analysis identifies a dwarfism gene in watermelon. Sci Rep 8(1):2908

    PubMed  PubMed Central  Google Scholar 

  • Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183(4):1555–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira ME, Satagopan J, Yandell BS, Williams PH, Osborn TC (1995) Mapping loci controlling vernalization requirement and flowering time in Brassica napus. Theor Appl Genet 5(5):727–732

    Google Scholar 

  • Guo S, Zhang J, Sun H, Salse J, Lucas WJ, Zhang H, Zheng Y, Mao L, Ren Y, Wang Z et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    CAS  PubMed  Google Scholar 

  • Illa-Berenguer E, Van Houten J, Huang Z, van der Knaap E (2015) Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor Appl Genet 128(7):1329–1342

    PubMed  Google Scholar 

  • Jimenez-Gomez JM, Alonso-Blanco C, Borja A, Anastasio G, Angosto T, Lozano R, Martinez-Zapater JM (2007) Quantitative genetic analysis of flowering time in tomato. Genome 50(3):303–315

    CAS  PubMed  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14(10):563–573

    CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286(5446):1962–1965

    CAS  PubMed  Google Scholar 

  • King Z, Serrano J, Boerma HR, Li Z (2014) Non-toxic and efficient DNA extractions for soybean leaf and seed chips for high-throughput and large-scale genotyping. Biotechnol Lett 36(9):1875–1879

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286(5446):1960–1962

    CAS  PubMed  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43(10):1096–1105

    CAS  PubMed  Google Scholar 

  • Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10(12):1973–1989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Lifschitz E, Eviatar T, Rozman A, Shalit A, Goldshmidt A, Amsellem Z, Alvarez JP, Eshed Y (2006) The tomato FT ortholog triggers systemic signals that regulate growth and flowering and substitute for diverse environmental stimuli. Proc Natl Acad Sci 103(16):6398–6403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin M-K, Belanger H, Lee Y-J, Varkonyi-Gasic E, Taoka K-I, Miura E, Xoconostle-Cázares B, Gendler K, Jorgensen RA, Phinney B et al (2007) Flowering locus T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19(5):1488–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Lin T, Klein J, Wang S, Qi J, Zhou Q, Sun J, Zhang Z, Weng Y, Huang S (2014) QTL-seq identifies an early flowering QTL located near flowering locus T in cucumber. Theor Appl Genet 127(7):1491–1499

    PubMed  Google Scholar 

  • Ma H, Xu S-P, Luo D, Xu Z-H, Xue H-W (2004) OsPIPK1, a rice phosphatidylinositol monophosphate kinase, regulates rice heading by modifying the expression of floral induction genes. Plant Mol Biol 54(2):295–310

    CAS  PubMed  Google Scholar 

  • Maheswaran M, Huang N, Sreerangasamy S, McCouch S (2000) Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol Breed 6(2):145–155

    CAS  Google Scholar 

  • Maynard DN, Elmstrom GW (1992) Triploid watermelon production practices and varieties. International Society for Horticultural Science (ISHS), Leuven, pp 169–178

    Google Scholar 

  • McGregor CE, Waters V (2013) Pollen viability of F1 hybrids between watermelon cultivars and disease-resistant, infraspecific crop wild relatives. HortScience 48(12):1428–1432

    Google Scholar 

  • McGregor CE, Waters V, Vashisth T, Abdel-Haleem H (2014) Flowering time in watermelon is associated with a major quantitative trait locus on chromosome 3. J Am Soc Hortic Sci 139(1):48–53

    Google Scholar 

  • Milne I, Shaw P, Stephen G, Bayer M, Cardle L, Thomas WT, Flavell AJ, Marshall D (2010) Flapjack—graphical genotype visualization. Bioinformatics 26(24):3133–3134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr HC (1986) Breeding vegetable crops. New york

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time. Plant Cell 14(suppl 1):S111–S130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ordonez Jr, SA, Silva, J, Oard, JH (2010) Association mapping of grain quality and flowering time in elite japonica rice germplasm. J Cereal Sci 51(3), 337-343

    Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146(3):1123–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301(5631):334–336

    CAS  PubMed  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14(1):21–29

    CAS  PubMed  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26(4):363–373

    CAS  PubMed  Google Scholar 

  • Rae AM, Howell EC, Kearsey MJ (1999) More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 83(5):586–596

    PubMed  Google Scholar 

  • Robert LS, Robson F, Sharpe A, Lydiate D, Coupland G (1998) Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus. Plant Mol Biol 37(5):763–772

    CAS  PubMed  Google Scholar 

  • Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, Seymour DK (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125(8):1603–1618

    PubMed  Google Scholar 

  • Schwartz C, Balasubramanian S, Warthmann N, Michael TP, Lempe J, Sureshkumar S, Kobayashi Y, Maloof JN, Borevitz JO, Chory J et al (2009) Cis regulatory changes at flowering locus T mediate natural variation in flowering responses of Arabidopsis thaliana. Genetics 183(2):723–732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta Stone of flowering time? Science 296(5566):285–289

    CAS  PubMed  Google Scholar 

  • Sumugat MR, Lee ON, Nemoto K, Sugiyama N (2010) Quantitative trait loci analysis of flowering-time-related traits in tomato. Sci Hortic 123(3):343–349

    CAS  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S et al (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74(1):174–183

    CAS  PubMed  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Lai X-H, Hinga ME, Lobos KB, Xu Y, Martinez CP, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107(3):479–493

    CAS  PubMed  Google Scholar 

  • Untergasser, A, Nijveen, H, Rao, X, Bisseling, T, Geurts, R, Leunissen, JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35(suppl2) W71-W74 

    PubMed  PubMed Central  Google Scholar 

  • U.S. Department of Agriculture (2017) U.S. Department of Agriculture- National Agricultural Statistics Service. Agricultural statistics. 10 Jan 2019. https://www.nass.usda.gov/Publications/Ag_Statistics/index.php

  • Wehner TC (2008) Watermelon. Vegetables I: Springer. p 381–418

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci 103(51):19581–19586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127(4):1425–1429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai H, Ning W, Wu H, Zhang X, Lü S, Xia Z (2016) DNA-binding protein phosphatase AtDBP1 acts as a promoter of flowering in Arabidopsis. Planta 243(3):623–633

    CAS  PubMed  Google Scholar 

  • Zimmerman M (1988) Nectar production, flowering phenology, and strategies for pollination. Plant Reprod Ecol patterns Strateg 41:157–178

    Google Scholar 

Download references

Acknowledgments

This work was in part supported by the United States Department of Agriculture (GEO00759) and the UGA Institute of Plant Breeding, Genetics, and Genomics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia McGregor.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimode, W., Clevenger, J. & McGregor, C. Fine-mapping of a major quantitative trait locus Qdff3-1 controlling flowering time in watermelon. Mol Breeding 40, 3 (2020). https://doi.org/10.1007/s11032-019-1087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-1087-z

Keywords

Navigation