Skip to main content
Log in

Genetic analysis of shoot fresh weight in a cross of wild (G. soja) and cultivated (G. max) soybean

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Shoot fresh weight (SFW) is one of the parameters, used to estimate the total plant biomass yield in soybean. In the present study, a total of 188 F5:8 recombinant inbred lines (RIL) derived from an interspecific cross of PI 483463 (Glycine soja) and Hutcheson (Glycine max) were investigated for SFW variation in the field for three consecutive years. The parental lines and RILs were phenotyped in the field at the R6 stage by measuring total biomass in kg/plot to identify the QTLs for SFW. Three QTLs qSFW6_1, qSFW15_1, and qSFW19_1 influencing SFW were identified on chromosome 6, 15, and 19, respectively. The QTL qSFW19_1 flanked between the markers BARC-044913-08839 and BARC-029975-06765 was the stable QTL expressed in all the three environments. The phenotypic variation explained by the QTLs across all environments ranged from 6.56 to 21.32 %. The additive effects indicated contribution of alleles from both the parents and additive × environment interaction effects affected the expression of SFW QTL. Screening of the RIL population with additional SSRs from the qSFW19_1 region delimited the QTL between the markers SSR19-1329 and BARC-29975-06765. QTL mapping using bin map detected two QTLs, qSFW19_1A and qSFW19_1B. The QTL qSFW19_1A mapped close to the Dt1 gene locus, which affects stem termination, plant height, and floral initiation in soybean. Potential candidate genes for SFW were pinpointed, and sequence variations within their sequences were detected using high-quality whole-genome resequencing data. The findings in this study could be useful for understanding genetic basis of SFW in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul-Baki AA, Morse RD, Devine TE, Teasdale JR (1997) Broccoli production in forage soybean and foxtail millet cover crop mulches. Hort Sci 32:836–839

    Google Scholar 

  • Anhalt UCM, Heslop- Harrison JS, Piepho HP, Byrne S, Barth S (2009) Quantitative trait loci mapping for biomass yield traits in a Lolium inbred line derived F2 population. Euphytica 170:99–107

    Article  CAS  Google Scholar 

  • Asekova S, Shannon JG, Lee JD (2014) The current status of forage soybean. Plant Breed Biotech 2:334–341

    Article  Google Scholar 

  • Bachlava E, Dewey RE, Burton JW, Cardinal AJ (2009) Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop Sci 49:433–442

    Article  CAS  Google Scholar 

  • Benlloch R, Berbel A, Serrano-Mislata A, Madueño F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Botany 100:659–676

    Article  Google Scholar 

  • Blount AR, Wright DL, Sprenkel RK, Hewitt TD, Myer RO (2002) Forage soybeans for grazing, hay, and silage. Agronomy Department, UF/IFAS Extension, SS-AGR-180. http://edis.ifas.ufl.edu. Accessed 26 Dec 2015

  • Brensha W, Kantartzi SK, Meksem K, Grier RL, Barakat A, Lightfoot DA, Kassem MA (2012) Genetic analysis of root and shoot traits in the ‘Essex’ by ‘Forrest’ recombinant inbred line (RIL) population of soybean [Glycine max (L.) Merr.]. J Plant Geno Sci 1:1–9

    Article  Google Scholar 

  • Buss GR, Camper HM Jr, Roane CW (1988) Registration of ‘Hutcheson’ soybean. Crop Sci 28:1024

    Article  Google Scholar 

  • Buxton DR (1994) Quality-related characteristics of forages as influenced by plant environment and agronomic factors. Anim Feed Sci Tech 59:37–49

    Article  Google Scholar 

  • Chen Z, Wang B, Dong X, Liu H, Ren L, Chen J, Hauck A, Song W, Lai J (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genom 15:433

    Article  Google Scholar 

  • Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603

    Article  CAS  PubMed  Google Scholar 

  • Concibido VC, Vallee BL, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    CAS  PubMed  Google Scholar 

  • Devine TE, Hatley EO, Stamer DE (1998) Registration of ‘Derry’ forage soybean. Crop Sci 38:1719

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissues. Focus 12:13–15

    Google Scholar 

  • Edwards D, Batley J, Snowdon RJ (2013) Accessing complex crop genomes with next-generation sequencing. Theor Appl Genet 126:1–11

    Article  CAS  PubMed  Google Scholar 

  • El-Lithy ME, Clerk EJM, Ruys GJ, Koornneef M, Vreugdenhil D (2004) Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiol 135:444–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM (2014) Genotype x environment interaction QTL mapping in plants: lessons from Arabidopsis. Trends Plant Sci 19:390–398

    Article  CAS  PubMed  Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci 11:929–931

    Article  Google Scholar 

  • Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EWT, Cutler AJ (2011) The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. Plant Cell 23:1772–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golzarian MR, Frick RA, Rajendran K, Berger B, Roy S, Tester M, Lun DS (2011) Accurate inference of shoot biomass from high-throughput images of cereal plants. Plant Methods 7:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ha BK, Vuong TD, Velusamy V, Nguyen HT, Shannon G, Lee JD (2013) Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463. Euphytica 193:79–88

    Article  CAS  Google Scholar 

  • Ha BK, Kim HJ, Velusamy V, Vuong TD, Nguyen HT, Shannon JG, Lee JD (2014) Identification of quantitative trait loci controlling linolenic acid concentration in PI 483463 (Glycine soja). Theor Appl Genet 127:1501–1512

    Article  CAS  PubMed  Google Scholar 

  • Hanson CH, Robinson HF, Comstock RE (1956) Biometrical studies of yield in segregating populations of Korean Lespedeza. J Agron 48:268–272

    Article  Google Scholar 

  • He Q, Yang H, Xiang S, Wang W, Xing G, Zhao T, Gai J (2014) QTL mapping for the number of branches and pods using wild chromosome segment substitution lines in soybean [Glycine max (L.) Merr.]. Plant Gen Res 12:172–177

    Article  Google Scholar 

  • Hintz RW, Albrecht KA, Oplinger ES (1992) Yield and quality of soybean forage as affected by cultivar and management practices. J Agron 84:795–798

    Article  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nature Biotechnol 17:808–812

    Article  CAS  Google Scholar 

  • Hyten DL, Song Q, Zhu Y, Choi IY, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB (2006) Impacts of genetic bottlenecks on soybean genome diversity. PNAS 103:16666–16671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyten D, Song Q, Choi IY, Yoon MS, Specht J, Matukumalli L, Nelson R, Shoemaker R, Young N, Cregan P (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    Article  CAS  PubMed  Google Scholar 

  • Hyten DL, Choi IY, Song Q, Specht JE, Carter TE, Shoemaker RC, Hwang E-Y, Matukumalli LK, Cregan PB (2010) A high density integrated genetic linkage map of soybean and the development of a 1536 Universal Soy Linkage Panel for QTL mapping. Crop Sci 50:960–968

    Article  CAS  Google Scholar 

  • Ingley E, Hemmings BA (1994) Pleckstrin homology (PH) domains in signal transduction. Cell Biochem Biophys 56:436–443

    CAS  Google Scholar 

  • Jahn CE, Mckay JK, Mauleon R, Stephens J, McNally KL, Bush DR, Leung H, Leach JE (2011) Genetic variation in biomass traits among 20 diverse rice varieties. Plant Physiol 155:157–168

    Article  CAS  PubMed  Google Scholar 

  • Kilian B, Graner A (2012) NGS technologies for analyzing germplasm diversity in genebanks. Oxford University Press. doi:10.1093/bfgp/elr046

  • Koester RP, Skoneczka JA, Cary TR, Diers BW, Ainsworth EA (2014) Historical gains in soybean [Glycine max (L.) Merr.] seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J Exp Bot 65:3311–3321

    Article  PubMed  PubMed Central  Google Scholar 

  • Koivisto JM, Devine TE, Lane GPF, Sawyer CA, Brown HJ (2003) Forage soybeans [Glycine max (L.) Merr.] in the United Kingdom: test of new cultivars. Agronomie 23:287–291

    Article  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • LaFramboise T (2009) Single nucleotide polymorphism arrays: a decade of biological, computational and technological advances. Nucl Acids Res. doi:10.1093/nar/gkp552

    PubMed  PubMed Central  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen W, Yang G, Wong FL, Li MW, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Langewisch T, Zhang H, Vincent R, Joshi T, Xu D, Bilyeu K (2014) Major soybean maturity gene haplotypes revealed by SNPViz analysis of 72 sequenced soybean genomes. PLoS ONE 9:e94150

    Article  PubMed  PubMed Central  Google Scholar 

  • Lark KG, Chase K, Fred A, Mansur LM, Orf JH (1995) Interactions between quantitative trait loci in soybean in which trait variation at one locus is conditional upon a specific allele at another. PNAS 92:4656–4660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SH, Bailey MA, Mian MAR, Shipe ER, Ashley DA, Parrott WA, Hussey RS, Boerma HR (1996) Identification of quantitative trait loci for plant height, lodging, and maturity in a soybean population segregating for growth habit. Theor Appl Genet 92:516–523

    Article  CAS  PubMed  Google Scholar 

  • Lee JD, Shannon JG, Chung G, Hwang YH (2011) Wild soybean (Glycine soja Sieb. & Zucc)—a genetic source for soybean variety improvement. Kor Soybean Digest 28:7–15

    Google Scholar 

  • Lee EJ, Choi HJ, Shin DH, Kwon CH, Shannon JG, Lee JD (2014a) Evaluation of forage yield and quality in wild soybean (Glycine soja Sieb. and Zucc). Plant Breed Biotechnol 2:71–79

    Article  Google Scholar 

  • Lee EJ, Choi HJ, Shin DH, Kwon CH, Shannon JG, Lee JD (2014b) Evaluation of forage yield and quality for the accessions derived from inter-specific cross between wild and cultivated soybeans. Kor J Breed Sci 46:66–77

    Article  Google Scholar 

  • Lee S, Freewalt KR, McHale LK, Song Q, Jun TH, Michel AP, Dorrance AE, Mian MAR (2015) A high-resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6K. Mol Breed 35:58

    Article  Google Scholar 

  • Li ZK, Yu SB, Lafitte HR, Huang N, Courtois B, Hittalmani S, Vijayakumar CH, Liu GF, Wang GC, Shashidhar HE, Zhuang JY, Zheng KL, Singh VP, Sidhu JS, Srivantaneeyakul S, Khush GS (2003) QTL × environment interactions in rice. I. Heading date and plant height. Theor Appl Genet 108:141–153

    Article  CAS  PubMed  Google Scholar 

  • Li YD, Wang YJ, Tong YP, Gao JG, Zhang JS, Chen SY (2005) QTL mapping of phosphorus deficiency tolerance in soybean [Glycine max (L.) Merr.]. Euphytica 142:137–142

    Article  CAS  Google Scholar 

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Liang Q, Cheng X, Mei M, Yan X, Liao H (2010) QTL analysis of root traits as related to phosphorus efficiency in soybean. Ann Bot 106:223–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Yu Y, Yang H, Xu L, Wei D, Du H, Cui W, Zhang H (2014) Inheritance and QTL mapping of related root traits in soybean at the seedling stage. Theor Appl Genet 127:2127–2137

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Abe J (2010) QTL Mapping for photoperiod insensitivity of a Japanese soybean landrace Sakamotowase. J Hered 10:251–256

    Article  Google Scholar 

  • Liu GF, Yang J, Zhu J (2006) Mapping QTL for biomass yield and its components in rice (Oryza sativa L.). Acta Genetica Sinica 33:607–616

    Article  PubMed  Google Scholar 

  • Liu B, Fujita T, Yan Z, Sakamoto S, Xu D, Abe J (2007) QTL Mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100:1027–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010) The soybean stem growth habit gene Dt1 is an ortholog of Arabidopsis TERMINAL FLOWER1. Plant Physiol 153:198–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, QuC Wittkop B, Yi B, Xiao Y, HeY Snowdon RJ, Li J, Yin T (2013) A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS ONE 8:e83052

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Xu J, Yuan Z, Hao Z, Xie C, Li X, Shah T, Lan H, Zhang S, Rong T, Xu Y (2012) Comparative LD mapping using single SNPs and haplotypes identifies QTL for plant height and biomass as secondary traits of drought tolerance in maize. Mol Breed 30:407–418

    Article  CAS  Google Scholar 

  • Manavalan LP, Prince SJ, Musket TA, Chaky J, Deshmukh R, Vuong TD, Song L, Cregan PB, Nelson JC, Shannon JG, Specht JE, Nguyen HT (2015) Identification of novel QTL governing root architectural traits in an interspecific soybean population. PLoS ONE. doi:10.1371/journal.pone.0120490

    PubMed  PubMed Central  Google Scholar 

  • Mansur LM, Lark KG, Kross H, Oliveira A (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theor Appl Genet 86:907–913

    CAS  PubMed  Google Scholar 

  • Mansur LM, Orf JH, Chase K, Jarvik T, Cregan PB, Lark KG (1996) Genetic mapping of agronomic traits using recombinant inbred lines of soybean. Crop Sci 36:1327–1336

    Article  CAS  Google Scholar 

  • Medic J, Atkinson C, Hurburgh CR (2014) Current knowledge in soybean composition. J Am Oil Chem Soc 91:363–384

    Article  CAS  Google Scholar 

  • Meyer RC, Kusterer B, Lisec J, Steinfath M, Becher M, Scharr H, Melchinger AE, Selbig J, Schurr U, Willmitzer L, Altmann T (2010) QTL analysis of early stage heterosis for biomass in Arabidopsis. Theor Appl Genet 120:227–237

    Article  PubMed  Google Scholar 

  • Orf JH, Chase K, Jarvik T, Mansur LM, Cregan PB, Adler FR, Lark KG (1999) Genetics of soybean agronomic traits: I. Comparison of three related recombinant inbred populations. Crop Sci 39:1642–1651

    Article  Google Scholar 

  • Patil G, Do T, Vuong TD, Valliyodan B, Lee JD, Chaudhary J, Shannon JG, Nguyen HT (2016) Genomic-assisted haplotype analysis and the development of high-throughput SNP markers for salinity tolerance in soybean. Sci Rep. doi:10.1038/srep19199

    Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  CAS  PubMed  Google Scholar 

  • Perez-de-Castro MA, Vilanova S, Canizares J, Pascual L, Blanca MJ, Diez JM, Prohens J, Pico B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Praefcke GJ, McMahon HT (2004) The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5:133–147

    Article  CAS  PubMed  Google Scholar 

  • Probst AH, Judd RW (1973) Origin, U.S. history and development, and world distribution. In: Caldwell BE (ed) Soybeans: improvement, production, and uses. American Society of Agronomy, Madison, pp 1–15

    Google Scholar 

  • Rao SC, Mayeux HS, Northup BK (2005) Performance of forage soybean in the southern Great Plains. Crop Sci 5:1973–1977

    Article  Google Scholar 

  • SAS Institute (2013) SAS/STAT 9.4 user’s guide. SAS Inst. Inc., Cary, NC27513-2414

  • Serba DD, Daverdin G, Bouton JH, Devos KM, Brummer EC, Saha MC (2015) Quantitative trait loci (QTL) underlying biomass yield and plant height in Switchgrass. Bioenerg Res 8:307–324

    Article  Google Scholar 

  • Sheaffer CC, Orf JH, Devine TE, Jewett JG (2001) Yield and quality of forage soybean. J Agron 93:99–106

    Article  CAS  Google Scholar 

  • Shiringani AL, Friedt W (2011) QTL for fiber-related traits in grain × sweet sorghum as a tool for the enhancement of sorghum as a biomass crop. Theor Appl Genet 123:999–1011

    Article  PubMed  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50 K, a high-density genotyping array for soybean. PLoS ONE 8:e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509

    Article  CAS  Google Scholar 

  • SPSS (2007) for Windows. Release 16.0. SPSS Inc, Chicago, IL

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Tian Z, WangX Lee R, Li Y, Specht JE, Nelson RL, McClean PE, Qiu L, Ma J (2010) Artificial selection for determinate growth habit in soybean. PNAS 107:8563–8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, and Zeng ZB (2011) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC

  • Wang XZ, Jiang GL, Green M, Scott RA, Hyten DL, Cregan PB (2014) QTL analysis of unsaturated fatty acids in a recombinant inbred population of soybean. Mol Breed 33:281–296

    Article  CAS  Google Scholar 

  • Wang T, Wang M, Hu S, Xia Y, Tong H, Pan Q, Xue J, Yan J, Li J, Yang X (2015) Genetic basis of maize kernel starch content revealed by high-density single nucleotide polymorphism markers in a recombinant inbred line population. BMC Plant Biol. doi:10.1186/s12870-015-0675-2

    Google Scholar 

  • Wolf S, Hematy K, Hofte H (2012) Growth control and cell wall signaling in plants. Annu Rev Plant Biol 63:381–407

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Tang D, Li M, Wang K, Cheng Z (2013) Loose plant architecture, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161:317–329

    Article  CAS  PubMed  Google Scholar 

  • Xing GN, Zhou B, Wang YF, Zhao TJ, Yu DY, Chen SY, Gai JY (2012) Genetic components and major QTL confer resistance to bean pyralid (Lamprosema indicata Fabricius) under multiple environments in four RIL populations of soybean. Theor Appl Genet 125:859–875

    Article  PubMed  Google Scholar 

  • Xiong G, Li R, Qian Q, Song X, Liu X, Yu Y, Zeng D, Wan J, Li J, Zhou Y (2010) The rice dynamin-related protein DRP2B mediates membrane trafficking, and thereby plays a critical role in secondary cell wall cellulose biosynthesis. Plant J 64:56–70

    CAS  PubMed  Google Scholar 

  • Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. PNAS 110:13469–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav RS, Bidinger FR, Hash CT, Yadav YP, Yadav OP, Bhatnagar SK, Howarth CJ (2003) Mapping and characterization of QTL × E interactions for traits determining grain and stoker yield in pearl millet. Theor Appl Genet 106:512–520

    CAS  PubMed  Google Scholar 

  • Zhang ZH, Li P, Wang LX, Hua ZL, Zhuc LH, Zhua YG (2004) Genetic dissection of the relationships of biomass production and partitioning with yield and yield related traits in rice. Plant Sci 167:1–8

    Article  CAS  Google Scholar 

  • Zhang D, Cheng H, Geng L, Kan G, Cui S, Meng Q, Gai J, Yu D (2009) Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage. Euphytica 167:313–322

    Article  CAS  Google Scholar 

  • Zhuang JY, Lin HX, Lu J, Qian HR, Hittalmani S, Huang N, Zheng KL (1997) Analysis of QTL × environment interaction for yield components and plant height in rice. Theor Appl Genet 95:799–808

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out with the support of the Next-Generation BioGreen 21 Program for Agriculture and Technology Development (Project No. PJ1109201), Rural Development Administration, Republic of Korea.

Authors' contributions

S Asekova, M. Kim performed field experiment, S. Asekova, K.P. Kulkarni, and G. Patil performed QTL mapping, genotyping, and genetic analysis, S. Asekova and K.P. Kulkarni contributed to drafting the manuscript, and J.G. Shannon, J.T. Song, H.T. Nguyen, and J.D. Lee editing manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Dong Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The authors declare that the experiments comply with the current laws of counties in which the experiments were performed.

Additional information

Sovetgul Asekova and Krishnanand P. Kulkarni have contributed equally to this research.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asekova, S., Kulkarni, K.P., Patil, G. et al. Genetic analysis of shoot fresh weight in a cross of wild (G. soja) and cultivated (G. max) soybean. Mol Breeding 36, 103 (2016). https://doi.org/10.1007/s11032-016-0530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0530-7

Keywords

Navigation