Skip to main content
Log in

Pooled mapping: an efficient method of calling variations for population samples with low-depth resequencing data

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Whole-genome resequencing (WGR) is a high-throughput way to determine genomic variations in breeding-related research. Accuracy and sensitivity are two of the most important issues in variation calling of WGR, especially for samples with low-depth resequencing data, which are used to reduce cost and save time in studies as survey of core germplasms from natural populations or genome-based breeding selection in segregation populations. An approach called pooled mapping was developed to call variations from low-depth resequencing data of natural or segregation populations. It is highly accurate and sensitive. First, pooled mapping creates a library of confident polymorphic loci in genomes of the population; then, the genotypes are called out at these confident loci for each sample in an efficient manner. The reliability of this pooled mapping method was confirmed using simulated datasets, real resequencing data and experimental genotyping. With onefold simulated resequencing data, results showed that pooled mapping identified SNPs in high accuracy (99.59 %) and sensitivity (93 %), compared to the commonly used method (accuracy: 29 %; sensitivity: 56 %). For the real low-depth resequencing data (≈0.8×) of 281 B. oleracea accessions, four loci corresponding to 1063 sites were selected for KASP genotyping to confirm the performance of pooled mapping. We found for all the 875 homozygous sites analyzed, pooled mapping achieved accuracy as 98.24 % and a sensitivity as 90.97 %. In conclusion, pooled mapping is an efficient means of determining reliable genomic variations with limited resequencing data for population samples. It will be a valuable tool in population genomic analysis and genome-based breeding research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal M, Shrivastava N, Padh H (2008) Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep 27(4):617–631. doi:10.1007/s00299-008-0507-z

    Article  CAS  PubMed  Google Scholar 

  • Ahmed SM, Verma V, Qazi PH, Ganaie MM, Bakshi SK, Qazi GN (2005) Molecular phylogeny in Indian Tinospora species by DNA based molecular markers. Plant Syst Evol 256(1–4):75–87. doi:10.1007/s00606-004-0293-1

    Article  CAS  Google Scholar 

  • Bornet B, Branchard M (2001) Nonanchored inter simple sequence repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Mol Biol Rep 19(3):209–215. doi:10.1007/bf02772892

    Article  CAS  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Consortium PGS (2011) Genome sequence and analysis of the tuber crop potato. Nature 475(7355):189–195

    Article  Google Scholar 

  • Consortium TG (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485(7400):635–641

    Article  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12(7):499–510

    Article  CAS  PubMed  Google Scholar 

  • Dorman RB, Rasmus NF, al-Haddad BJ, Serrot FJ, Slusarek BM, Sampson BK, Buchwald H, Leslie DB, Ikramuddin S (2012) Benefits and complications of the duodenal switch/biliopancreatic diversion compared to the Roux-en-Y gastric bypass. Surgery 152(4):758–767

    Article  PubMed  Google Scholar 

  • Engelsma K, Calus M, Bijma P, Windig J (2010) Estimating genetic diversity across the neutral genome with the use of dense marker maps. Genet Sel Evol 42(1):1–10. doi:10.1186/1297-9686-42-12

    Article  Google Scholar 

  • Fischer SG, Lerman LS (1979) Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell 16(1):191–200

    Article  CAS  PubMed  Google Scholar 

  • Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, Rokas A (2009) Benchmarking next-generation transcriptome sequencing for functional and evolutionary genomics. Mol Biol Evol 26(12):2731–2744

    Article  CAS  PubMed  Google Scholar 

  • Goff SA, Ricke D, Lan T-H, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    Article  CAS  PubMed  Google Scholar 

  • Grodzicker T, Williams J, Sharp P, Sambrook J (1974) Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harb Symp Quant Biol 39:439–446

    Article  Google Scholar 

  • Grossman PD, Bloch W, Brinson E, Chang CC, Eggerding FA, Fung S, Woo S, Winn-Deen ES (1994) High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res 22(21):4527–4534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19(6):1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967

    Article  CAS  PubMed  Google Scholar 

  • Imelfort M, Duran C, Batley J, Edwards D (2009) Discovering genetic polymorphisms in next-generation sequencing data. Plant Biotechnol J 7(4):312–317

    Article  CAS  PubMed  Google Scholar 

  • Kantety R, La Rota M, Matthews D, Sorrells M (2002) Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat. Plant Mol Biol 48(5–6):501–510. doi:10.1023/a:1014875206165

    Article  CAS  PubMed  Google Scholar 

  • Landegren U, Kaiser R, Caskey CT, Hood L (1988) DNA diagnostics-molecular techniques and automation. Science 242(4876):229–237

    Article  CAS  PubMed  Google Scholar 

  • Larose DT (2005) k-nearest neighbor algorithm. In: Discovering knowledge in data: an introduction to data mining. Wiley, pp 90–106

  • Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint arXiv:13033997

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26(5):589–595

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Ling H-Q, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L, Tao Y (2013) Draft genome of the wheat A-genome progenitor Triticum urartu. Nature 496(7443):87–90

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun. doi:10.1038/ncomms4930

    Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Mir RR, Varshney RK (2012) Future prospects of molecular markers in plants. Mol Markers Plants 169–190

  • Mohan M, Nair S, Bhagwat A, Krishna T, Yano M, Bhatia C, Sasaki T (1997) Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed 3(2):87–103

    Article  CAS  Google Scholar 

  • Mutz K-O, Heilkenbrinker A, Lönne M, Walter J-G, Stahl F (2013) Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol 24(1):22–30

    Article  CAS  PubMed  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5(4):874–879

    Article  CAS  PubMed  Google Scholar 

  • Paran I, Michelmore RW (1993) Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet 85(8):985–993. doi:10.1007/bf00215038

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492(7429):423–427

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2(3):225–238. doi:10.1007/bf00564200

    Article  CAS  Google Scholar 

  • Quail MA, Smith M, Coupland P, Otto TD, Harris SR, Connor TR, Bertoni A, Swerdlow HP, Gu Y (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13(1):341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts A, McMillan L, Wang W, Parker J, Rusyn I, Threadgill D (2007) Inferring missing genotypes in large SNP panels using fast nearest-neighbor searches over sliding windows. Bioinformatics 23(13):i401–i407

    Article  CAS  PubMed  Google Scholar 

  • Rounsley S, Marri PR, Yu Y, He R, Sisneros N, Goicoechea JL, Lee SJ, Angelova A, Kudrna D, Luo M (2009) De novo next generation sequencing of plant genomes. Rice 2(1):35–43

    Article  Google Scholar 

  • Schmickl R, Jørgensen MH, Brysting AK, Koch MA (2010) The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier. BMC Evol Biol 10(1):98

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J (2010) Genome sequence of the palaeopolyploid soybean. Nature 463(7278):178–183

    Article  CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Schroder J, Schroder H, Puglisi S (2009) SNP detection for massively parallel whole-genome resequencing. Bioinf 14(17):2157–2163

    Article  Google Scholar 

  • Semagn K, Bjørnstad Å, Ndjiondjop MN (2006) An overview of molecular marker methods for plants. Afr J Biotechnol 5(25):2540–2568

    CAS  Google Scholar 

  • Somers D, Ravel C, Praud S, Murigneux A, Canaguier A, Sapet F, Samson D, Balfourier F, Dufour P, Chalhoub B (2006) Single-nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49(9):1131–1139

    Article  Google Scholar 

  • Tautz D, Trick M, Dover GA (1985) Cryptic simplicity in DNA is a major source of genetic variation. Nature 322(6080):652–656

    Article  Google Scholar 

  • Tayeh N, Bahrman N, Devaux R, Bluteau A, Prosperi J-M, Delbreil B, Lejeune-Hénaut I (2013) A high-density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI. Mol Breed 32(2):279–289. doi:10.1007/s11032-013-9869-1

    Article  CAS  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci 98(16):9161–9166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27(9):522–530

    Article  CAS  PubMed  Google Scholar 

  • Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34(3):1–31. doi:10.1186/1297-9686-34-3-275

    Article  Google Scholar 

  • Wang X, Lou P, Bonnema G, Yang B, He H, Zhang Y, Fang Z (2005) Linkage mapping of a dominant male sterility gene Ms-cd1 in Brassica oleracea. Genome 48(5):848–854

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhang W-Z, Song L-F, Zou J-J, Su Z, Wu W-H (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148(3):1201–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43(10):1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18(22):6531–6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Bai G (2015) Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery. Mol Breed 35(1):1–11. doi:10.1007/s11032-015-0240-6

    Article  Google Scholar 

  • Yu J, Fang D, Kohel R, Ulloa M, Hinze L, Percy R, Zhang J, Chee P, Scheffler B, Jones D (2012) Development of a core set of SSR markers for the characterization of Gossypium germplasm. Euphytica 187(2):203–213. doi:10.1007/s10681-012-0643-y

    Article  CAS  Google Scholar 

  • Zhu Y, Song Q, Hyten D, Van Tassell C, Matukumalli L, Grimm D, Hyatt S, Fickus E, Young N, Cregan P (2003) Single-nucleotide polymorphisms in soybean. Genetics 163(3):1123–1134

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the 973 Program 2012CB113900 to XW and FC; the 973 Program 2013CB127000 and the 863 Program 2012AA100101 to XW; the National Natural Science Foundation of China NSFC Grant 31301771 and National Science and Technology Ministry (2014BAD01B09) to FC; the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences. Research was carried out in the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P. R. China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Cheng or Xiaowu Wang.

Ethics declarations

Conflict of interest

All authors confirm to have no conflict of interest.

Additional information

Lixia Fu and Chengcheng Cai have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Cai, C., Cui, Y. et al. Pooled mapping: an efficient method of calling variations for population samples with low-depth resequencing data. Mol Breeding 36, 48 (2016). https://doi.org/10.1007/s11032-016-0476-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0476-9

Keywords

Navigation