Skip to main content
Log in

Genetic mapping and pyramiding of two new pear scab resistance QTLs

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Scab is one of the major fungal diseases infecting pear trees, causing the greatest economic losses. Identifying and pyramiding scab resistance factors should help in breeding new resistant pear cultivars. We have identified and mapped two new pear resistance loci against the fungal pathogen Venturia pirina. The first locus, mapped both as a major gene and as a QTL, is located on linkage group (LG) 01 of the hybrid P3480, deriving from the European pear cultivar ‘Wilder.’ It colocalizes with the Vnk resistance gene found in the Asian pear cultivar ‘Kinchaku’ against Venturia nashicola. A second locus, mapped as a QTL, is located on LG04 of the interspecific cultivar ‘Euras.’ In a small ‘Euras’ × P3480 progeny, seven seedlings carrying the resistant alleles at both loci have been selected using SSR markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe K, Kotobuki K, Sato T, Terai O (2000) Inheritance of resistance to pear scab from European pears to Asian pears. J Jpn Soc Hortic Sci 1:1–8

    Article  Google Scholar 

  • Andries N (2002) Achievements and prospectives in pear breeding at the Fruit Research Station Voinesti, Romania. Acta Hortic 596:261–264

    Article  Google Scholar 

  • Asins MJ (2002) Present and future of quantitative trait analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarinui S, Parocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceshi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci USA 101:886–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouvier L, Bourcy M, Boulay M, Tellier M, Guérif P, Denancé C, Durel CE, Lespinasse Y (2012) The new pear scab resistance gene Rvp1 from the European pear cultivar ‘Navara’ maps in a genomic region syntenic to an apple scab resistance gene cluster on linkage group 2. Tree Genet Genomes 8:53–60

    Article  Google Scholar 

  • Braniste N, Andries N, Ghidra V (2008) Pear genetic breeding to improve the Romanian varieties. Acta Hortic 800:491–496

    Article  Google Scholar 

  • Broggini G, Galli P, Parravicini G, Gianfranceschi L, Gessler C, Patocchi A (2009) HcrVf paralogs are present on linkage groups 1 and 6 of Malus. Genome 52:129–138

    Article  CAS  PubMed  Google Scholar 

  • Brun H, Chèvre A-M, Fitt BD, Powers S, Besnard A-L, Ermel M, Huteau V, Marquer B, Eber F, Renard M, Andrivon D (2010) Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185:285–299

    Article  PubMed  Google Scholar 

  • Bus VGM, Van de Weg WE, Durel CE, Gessler C, Calenge F, Parisi L, Rikkerink E, Gardiner S, Patocchi A, Meulenbroek E, Schouten H, Laurens F (2004) Delineation of a scab resistance gene cluster on linkage group 2 of apple. Acta Hortic 663:57–62

    Article  CAS  Google Scholar 

  • Bus VGM, Rikkerink EHA, Caffier V, Durel CED, Plummer KM (2011) Revision of the nomenclature of the differential host–pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:19.1–19.23

    Article  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Pindo M, Thrimawithana A, Deng C, Ireland H, Fiers M, Dzierzon H, Cestaro A, Fontana P, Bianco L, Lu A, Storey R, Knäbel M, Saeed M, Montanari S, Kim YK, Nicolini D, Larger S, Stefani E, Allan AC, Bowen J, Harvey I, Johnston J, Malnoy M, Troggio M, Perchepied L, Sawyer G, Wiedow C, Won K, Viola R, Hellens RP, Brewer L, Bus VG, Schaffer RJ, Gardiner SE, Velasco R (2014) The draft genome sequence of European pear (Pyrus communis L. ‘Bartlett’). PLoS One 9(4):e92644

    Article  PubMed Central  PubMed  Google Scholar 

  • Chevalier M, Bernard C, Tellier M, Lespinasse Y, Filmond R, Le Lezec M (2004) Variability in the reaction of several pear (Pyrus communis) cultivars to different inocula of Venturia pirina. Acta Hortic 663:177–182

    Article  Google Scholar 

  • Chevalier M, Tellier M, Lespinasse Y, Bruyninckx M (2008) Behaviour studies of new strains of Venturia pirina isolated from ‘conference’ cultivar on a range of pear cultivars. Acta Hortic 800:817–823

    Article  Google Scholar 

  • Cho KH, Shin IS, Kim KT, Suh EJ, Hong SS, Lee HJ (2009) Development of AFLP and CAPS markers linked to the scab resistance gene, Rvn2, in an inter-specific hybrid pear (Pyrus spp.). J Hortic Sci Biotechnol 84:619–624

    CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138(963):71

    Google Scholar 

  • Costa F, van de Weg E, Stella S, Dondini L, Pratesi D, Musacchi S, Sansavini S (2008) Map position and functional allelic diversity of Md-Exp7, a new putative expansin gene associated with fruit softening in apple (Malus × domestica Borkh.) and pear (Pyrus communis). Tree Genet Genomes 4:575–586

    Article  Google Scholar 

  • Cova V, Lasserre-Zuber P, Piazza S, Cestaro A, Velasco R, Durel CE, Malnoy M (2015) High-resolution genetic and physical map of the Rvi1 (Vg) apple scab resistance locus. Mol Breed 35(16):1–13

    CAS  Google Scholar 

  • Croxall HE, Gwynne DC, Jenkins JEE (1952) The rapid assessment of apple scab on leaves. Plant Pathol 1:3941

    Google Scholar 

  • Fournet S, Kerlan MC, Renault L, Dantec JP, Rouaux C, Montarry J (2013) Selection of nematodes by resistant plants has implications for local adaptation and cross-virulence. Plant Pathol 62:184–193

    Article  Google Scholar 

  • Frey JE, Frey B, Sauer C, Kelerhals M (2004) Efficient low-cost DNA extraction and multiplex fluorescent PCR method for marker-assisted selection in breeding. Plant Breed 123:554–557

    Article  CAS  Google Scholar 

  • Gardiner SE, Bus VGM, Bassett H, Ranatunga C, Chagné D, Groenwold R, Troggio M, Pindo M (2009) Mapping of apple scab resistance genes from the differential host ‘Geneva’ and open-pollinated ‘Joe Trio’ to linkage group 4. In: XVII plant, animal and microbe genomes conference, January 10–14, San Diego, CA, poster

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25(6):473–503

    Article  CAS  Google Scholar 

  • Gonai T, Terakami S, Nishitani C, Yamamoto T, Kasumi M (2009) The validity of marker-assisted selection using DNA markers linked to a pear scab resistance gene (Vnk) in two populations. J Jpn Soc Hortic Sci 78(1):49–54

    Article  CAS  Google Scholar 

  • Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant Pathol 78:51–65

    Article  CAS  Google Scholar 

  • Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant Biol 3:315–319

    Article  CAS  PubMed  Google Scholar 

  • Hospital F (2009) Challenges for effective marker-assisted selection in plants. Genetica 136(2):303–310. doi:10.1007/s10709-008-9307-1

    Article  PubMed  Google Scholar 

  • Ishii H, Yanase H (2000) Venturia nashicola, the scab fungus of Japanese and Chinese pears: a species distinct from V. pirina. Mycol Res 104(6):755–759

    Article  Google Scholar 

  • Ishii H, Udagawa H, Nishimoto S, Tsuda T, Nakashima H (1992) Scab resistance in pear species and cultivars. Acta Phytopathol Hung 27:293–298

    Google Scholar 

  • Ishii H, Watanabe H, Tanabe K (2002) Venturia nashicola: pathological specialization on pears and control trial with resistance inducers. Acta Hortic 587:613–621

    Article  CAS  Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63:125–140. doi:10.1270/jsbbs.63.125

    Article  PubMed Central  PubMed  Google Scholar 

  • Jänsch M, Broggini GAL, Weger J et al (2015) Identification of SNPs linked to eight apple disease resistance loci. Mol Breed 35:45. doi:10.1007/s11032-015-0242-4

    Article  Google Scholar 

  • Lespinasse Y, Chevalier M, Durel CE, Guérif P, Tellier M, Denancé C, Belouin A, Robert P (2008) Pear breeding for scab and psylla resistance. Acta Hortic 800:475–481

    Article  Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Moriya S, Iwanami H, Kotoda N, Haji T, Okada K, Terakami S, Mimida N, Yamamoto T, Abe K (2011) Aligned genetic linkage maps of apple rootstock cultivar ‘JM7’ and Malus sieboldii ‘Sanashi 63’ constructed with novel EST-SSRs. Tree Genet Genomes. doi:10.1007/s11295-011-0458-3

    Google Scholar 

  • Palloix A, Ayme V, Moury B (2009) Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183:190–199. doi:10.1111/j.1469-8137.2009.02827.x

    Article  CAS  PubMed  Google Scholar 

  • Patocchi A, Frei A, Frey JE, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breed 24:337–347

    Article  CAS  Google Scholar 

  • Pierantoni L, Dondini L, Cho KH, Shin IS, Gennari F, Chiodini R, Tartarini S, Kang SJ, Sansavini S (2007) Pear scab resistance QTLs via a European pear (Pyrus communis) linkage map. Tree Genet Genomes 3:311–317. doi:10.1007/s11295-006-0070-0

    Article  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29. doi:10.1016/j.tplants.2008.10.006

    Article  CAS  PubMed  Google Scholar 

  • Schouten HJ, Brinkhuis J, van der Burgh A, Schaart JG, Groenwold R, Broggini G, Gessler C (2014) Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. Tree Genet Genomes 10:251–260. doi:10.1007/s11295-006-0070-0

    Article  Google Scholar 

  • Shabi E, Rotem J, Loebenstein G (1972) Physiological races of Venturia pirina on pear. Phytopathology 63:41–43

    Article  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walser M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh) genome. Tree Genet Genomes 2(4):202–224

    Article  Google Scholar 

  • Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel CE (2008) Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome 51:657–667

    Article  CAS  PubMed  Google Scholar 

  • St Clair DA (2010) Quantitative disease resistance and quantitative resistance loci in breeding. Annu Rev Phytopathol 48:247–268

    Article  CAS  PubMed  Google Scholar 

  • Szabo T, Soltész M (1998) Susceptibility to diseases and pests of pear varieties in Hungary. Acta Hortic 475:497–501

    Google Scholar 

  • Terakami S, Shoda M, Adachi Y, Gonai T, Kasumi M, Sawamura Y, Iketani H, Kotobuki K, Patocchi A, Gessler C, Hayashi T, Yamamoto T (2006) Genetic mapping of the pear scab resistance gene Vnk of Japanese pear cultivar Kinchaku. Theor Appl Genet 113:743–752. doi:10.1007/s00122-006-0344-9

    Article  CAS  PubMed  Google Scholar 

  • van Dyk MM, Khashief Soeker M, Labuschagne IF, Rees DJG (2010) Identification of a major QTL for time of initial vegetative budbreak in apple (Malus × domestica Borkh.). Tree Genet Genomes 6:489–502

    Article  Google Scholar 

  • Van Ooijen JW (2004) MapQTL 5, software for the mapping of quantitative trait loci in experimental population. Kyazma B.V., Wageningen

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Wageningen B.V., Kyazma

    Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar S et al (2010) The genome of the domesticated apple (Malus × domestica). Nat Genet 42:833–841

    Article  CAS  PubMed  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breed 123:321–326

    Article  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Won K, Bastiaansee H, Kim YK, Song JH, Kang SS, Lee HC, Cho KH, Brewer L, Singla G, Gardiner SE, Chagné D, Bus VGM (2014) Genetic mapping of polygenic scab (Venturia pirina) resistance in an interspecific pear family. Mol Breed. doi:10.1007/s11032-014-0172-6

    Google Scholar 

  • Wu J, Wang Z, Shi Z et al (2013) The genome of pear (Pyrus bretschneideri Redh.). Genome Res 23(396):408

    Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002a) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16

    Article  CAS  Google Scholar 

  • Yamamoto T, Terakami S, Moriya S, Hosaka F, Kurita K, Kanamori H, Katayose Y, Saito T, Nishitani C (2013) DNA markers developed from genome sequencing analysis in Japanese pear (Pyrus pyrifolia). Acta Hortic 976:477–483

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the University of Angers with the young researcher SyntéPoirPom project. The authors thank Hélène Muranty for her critical review of the manuscript. They also thank Charles Poncet for the technical assistance delivered by the platform Gentyane of high-throughput genotyping of Clermont-Theix, Laurence Hibrand-Saint Oyant for the technical assistance delivered by the ANAN technical platform of the SFR QUASAV (Structure Fédérative de Recherche 4207 QUASAV), the INRA Horticultural Experimental Unit 0449 and the IRHS team in charge of the greenhouse management (INEM platform), and particularly, Michel Boucourt and Nicolas Dousset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Perchepied.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

QTL and markers data will be made publicly available through the Genome Database for Rosaceae (www.rosaceae.org).

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM_1:

Markers used for genetic mapping in A × P3480 and E × P2896 progenies. (DOCX 15 kb)

ESM_2:

Primer sequences of four new SSR markers located on linkage group 1 of the pear genome and used to genotype the F1 segregating population deriving from the cross ‘Angélys’ × P3480. (DOCX 12 kb)

ESM_3:

LOD plot for the quantitative trait loci (QTLs) detected for scab resistance (sporulation severity), named qrvp-LG01 and qrvp-LG04, in the F1 segregating population deriving from the cross ‘Euras’ × P3480 (DOCX 39 kb)

ESM_4:

Diagram exhibiting the mean values of the sporulation severity for the four genotypic classes (ac, ad, bc, bd) defined when combining the two alleles of the two SSR markers TsuGNH076 and SAmsCO865608 (respectively, a/b and c/d) for the parental genotypes ‘Euras’ and P3480 in their deriving F1 progeny. (DOCX 13 kb)

ESM_5:

Resistance genes and quantitative trait loci (QTLs) found in European and Asian pears in response to Venturia pirina and Venturia nashicola (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perchepied, L., Leforestier, D., Ravon, E. et al. Genetic mapping and pyramiding of two new pear scab resistance QTLs. Mol Breeding 35, 197 (2015). https://doi.org/10.1007/s11032-015-0391-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0391-5

Keywords

Navigation