Molecular Breeding

, 35:40 | Cite as

Gene targeting and editing in crop plants: a new era of precision opportunities

  • Amy R. Rinaldo
  • Michael AyliffeEmail author


With increasing global food demands in the face of challenging biotic and abiotic pressures on crop production, there is a vital need for good crop improvement strategies. Gene editing and gene targeting using designer nucleases are relatively new, sophisticated approaches that can be used for crop improvement. Designer nucleases are molecules that can be engineered to cleave virtually any endogenous DNA target sequence, making this technology inherently more powerful over current, essentially random mutation strategies. These molecules can also be used to promote targeted DNA insertions and homologous recombination. Further modifications of these molecules can convert them into designer transcription factors that can activate or suppress a gene of choice. Four designer nuclease platforms are currently available: meganucleases, zinc finger nucleases, TALENs and the more recently developed CRISPR/Cas9 system. All four of these systems have been shown to function in crop plants and have been used for site-specific gene targeting and gene editing. Herein, we describe the basis of each designer nuclease platform, highlighting the advantages and disadvantages of each, and give examples of their application in crop improvement.


TALEN CRISPR Nuclease Homologous NHEJ Recombination 



We wish to thank the Australian Grains Research and Development Corporation (GRDC) for financial support.


  1. Ainley WM, Sastry-Dent L, Welter ME, Murray MG, Zeitler B, Amora R, Corbin R, Miles RR, Arnold NL, Strange TL, Simpson MA, Cao Z, Carroll C, Pawelczak KS, Blue R, West K, Rowland LM, Perkins D, Samuel P, Dewes CM, Shen L, Sriram S, Evand SL, Rebar EJ, Zhang L, Gregory PD, Urnov FD, Webb SR, Petolino JF (2013) Trait stacking via targeted genome editing. Plant Biotechnol J 11:1126–1134PubMedGoogle Scholar
  2. Akbudak MA, More AB, Nandy S, Srivastava V (2010) Dosage-dependent gene expression from direct repeat locus in rice developed by site-specific gene integration. Mol Biotechnol 45:15–23PubMedGoogle Scholar
  3. Albert H, Dale EC, Lee E, Ow DW (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659PubMedGoogle Scholar
  4. Arnould S, Delenda C, Grizot S, Desseaux C, Paques F, Silva GH, Smith J (2011) The I-CreI meganuclease and its engineered derivatives: applications from cell modification to gene therapy. Protein Eng Des Sel 24:27–31PubMedGoogle Scholar
  5. Baszczynski CL, Gordon-Kamm WJ, Lyznik LA, Peterson DJ, Zhao ZY (2003) Site-specific recombinases and their uses for targeted gene manipulation in plant systems. In: Stewart CN Jr (ed) Transgenic plants: current innovations and future trends. Horizon, Wymondham, pp 157–178Google Scholar
  6. Beetham PR, Kipp PB, Sawycky XL, Arntzen CJ, May GD (1999) A tool for functional plant genomics: chimeric RNA/DNA oligonucleotides cause in vivo gene-specific mutations. Proc Natl Acad Sci USA 96:8774–8778PubMedCentralPubMedGoogle Scholar
  7. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39–49PubMedCentralPubMedGoogle Scholar
  8. Bibikova M, Golic M, Golic KG, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764PubMedGoogle Scholar
  9. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, LaHaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–1512PubMedGoogle Scholar
  10. Bogdanove AJ, Schornack S, Lahaye T (2010) TAL effectors: finding plant genes for disease and defense. Curr Opin Plant Biol 13:394–401PubMedGoogle Scholar
  11. Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705PubMedGoogle Scholar
  12. Cai CQ, Doyon Y, Ainley WH et al (2009) Targeted transgene integration in plant cells using designed zinc finger nucleases. Plant Mol Biol 69:699–1709PubMedGoogle Scholar
  13. Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 39:e82PubMedCentralPubMedGoogle Scholar
  14. Chan SH, Stoddard BL, Xu SY (2011) Natural and engineered nicking endonucleases—from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 239:1–18Google Scholar
  15. Chawla R, Ariza-Nieto M, Wilson AJ, Moore SK, Srivastava V (2006) Transgene expression produced by biolistic-mediated, site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol J 4:209–218PubMedGoogle Scholar
  16. Choi S, Begum D, Koshinsky H, Ow DW, Wing RA (2000) A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox-site specific recombination. Nucleic Acids Res 28:e19PubMedCentralPubMedGoogle Scholar
  17. Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genet 186:757–761Google Scholar
  18. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jian W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using the CRISPR/Cas systems. Sci 339:819–823Google Scholar
  19. Curtin SJ, Zhang F, Sander JD, Haun WJ, Starker C, Baltes NJ, Reyon D, Dalborg EJ, Goodwin MJ, Coffman AP, Dobbs D, Joung JK, Voytas DF, Stupar RM (2011) Targeted mutagenesis of duplicated genes in soybean with zinc finger nucleases. Plant Physiol 156:466–473PubMedCentralPubMedGoogle Scholar
  20. D’Halluin K, Vandderstraeten C, Stals E, Cornelissen M, Ruiter R (2008) Homologous recombination: a basis for targeted genome optimisation in crop species such as maize. Plant Biotechnol J 6:93–102PubMedGoogle Scholar
  21. Day CD, Lee E, Kobayashi J, Holappa LD, Albert H, Ow DW (2000) Transgene integration into the same chromosomal location can produce alleles that are differentially silenced. Genes Dev 14:2869–2880PubMedCentralPubMedGoogle Scholar
  22. de Pater S, Neuteboom LW, Pinas JE, Hooykaas PJ, van der Zaal BJ (2009) ZFN-induced mutagenesis and gene-targeting in Arabidopsis through agrobacterium-mediated floral dip transformation. Plant Biotechnol J 7:821–835PubMedGoogle Scholar
  23. de Pater S, Pinas JE, Hooykaas PJJ, van der Zaal BJ (2013) ZFN-mediated gene targeting of the Arabidopsis protoporhyrinogen oxidase gene through Agrobacterium-mediated floral dip transformation. Plant Biotechnol J 11:510–515PubMedCentralPubMedGoogle Scholar
  24. DeFrancesco L (2011) Move over ZFNs. Nat Biotechnol 29:681–684Google Scholar
  25. Dhalluin K, Vanderstraeten C, Van Hulle J, Rosolowska J, Van Den Brande I, Pennewaert A, Dhont K, Bossut M, Jantz D, Ruiter R, Broadvest J (2013) Targeted molecular trait stacking in cotton through targeted double-strand break induction. Plant Biotechnol J 11:933–941Google Scholar
  26. Djukanovic V, Smith J, Lowe K, Yang M, Gao H, Jones S, Nicholson MG, West A, Lape J, Bidney D, Falco SC, Jantz D, Lyznik LA (2013) Male-sterile plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I-CreI homing endonuclease. Plant J 76:888–899PubMedGoogle Scholar
  27. Dong C, Beetham P, Vincent K, Sharp P (2006) Oligonucleotide-directed gene repair in wheat using a transient plasmid gene repair assay system. Plant Cell Rep 25:457–465PubMedGoogle Scholar
  28. Fauser F, Schiml S, Puchta H (2014) Both CRISPR/Cas-based nuclease and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J 79:348–359PubMedGoogle Scholar
  29. Feng Z, Zhang B, Ding W, Liu X, Yang D-L, Wei P, Cao F, Zhu S, Zhang F, Mao Y, Zhu J-K (2013) Efficient genome editing in plants using a CSRIPR/Cas system. Cell Res 23:1229–1232PubMedCentralPubMedGoogle Scholar
  30. Fladung M, Becker D (2010) Targeted integration and removal of transgenes in hybrid aspen (Populus termula L. × P. tremuloides Michx.) using site-specific recombination systems. Plant Biol 12:334–340PubMedGoogle Scholar
  31. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High frequency off-target mutagenesis induced CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:8Google Scholar
  32. Gaj T, Gerbach CA, Barbas CF III (2013) ZFN, TALEN and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405PubMedCentralPubMedGoogle Scholar
  33. Gao H, Smith J, Yang M, Jones S, Djukanovic V, Nicholson MG, West A, Bidney D, Falco SC, Jantz D, Lyznik LA (2010) Heritable targeted mutagenesis in maize using designed endonucleases. Plant J 61:176–187PubMedGoogle Scholar
  34. Gasser CS, Fraley RT (1989) Genetically engineering plants for crop improvement. Science 244:1293–1299PubMedGoogle Scholar
  35. Gupta M, DeKelver RC, Palta A, Clifford C, Gopalan S, Miller JC, Novak S, Desloover D, Gachotte D, Connell J, Flook J, Patterson T, Robbins K, Rebar EJ, Gregory PD, Urnov FD, Petolino JF (2012) Transcriptional activation of Brassica napus B-ketoacyl-ACP synthase II with an engineered zinc finger protein transcription factor. Plant Biotechnol J10:783–791Google Scholar
  36. Gupta A, Hall VL, Kok FO, Shin M, McNulty JC, Lawson ND, Wolfe SA (2014) Targeted chromosomal deletions and inversions in zebrafish. Genome Res 23:1008–1017Google Scholar
  37. Gurushidze M, Henesel G, Hiekel S, Schedel S, Valkov V, Kumlehn J (2014) True-breeding targeted gene knock-out in barley using designer TALE-nuclease in haploid cells. PLoS. doi: 10.1371/journal.pone.0092046 Google Scholar
  38. Hannin M, Volrath S, Bogucki A, Briker M, Ward E, Paszkowski J (2001) Gene targeting in Arabidopsis. Plant J 28:671–677Google Scholar
  39. Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742–752PubMedGoogle Scholar
  40. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J. doi: 10.1111/pbi.12201 PubMedGoogle Scholar
  41. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170PubMedGoogle Scholar
  42. Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832PubMedCentralPubMedGoogle Scholar
  43. Iida S, Terada R (2005) Modification of endogenous natural genes by gene targeting in rice and other higher plants. Plant Mol Biol 59:205–219PubMedGoogle Scholar
  44. Jia H, Wang N (2014) Targeted genome editing of sweet orange using Cas9/sgRNA. PLoS ONE 9:e93806PubMedCentralPubMedGoogle Scholar
  45. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRIPSR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. doi: 10.1093/nar/gkt780 Google Scholar
  46. Jiang W, Yang B, Weeks DP (2014) Efficient CRISPR/Ca9-mediated gene editing in Arabidopsis thaliana and inheritance of modified genes in the T2 and T3 generations. PLoS ONE 9:e99225PubMedCentralPubMedGoogle Scholar
  47. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Sci 337:816–821Google Scholar
  48. Johnson RA, Gurevich V, Levy AA (2013) A rapid assay to quantify the cleavage efficiency of custom-designed nucleases in planta. Plant Mol Biol 82:207–221PubMedGoogle Scholar
  49. Joung JK, Sander JD (2013) TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol 14:49–55PubMedCentralPubMedGoogle Scholar
  50. Kerbach S, Lorz H, Becker D (2005) Site specific recombination in Zea mays. Theor Appl Genet 111:1608–1616PubMedGoogle Scholar
  51. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160PubMedCentralPubMedGoogle Scholar
  52. Klug A (2005) Towards therapeutic applications of engineered zinc finger proteins. FEBS Lett 579:892–894PubMedGoogle Scholar
  53. Kochevenko A, Willmitzer L (2003) Chimeric RNA/DNA oligonucleotide-based site-specific modification of the tobacco acetolactate synthase gene. Plant Physiol 132:174–184PubMedCentralPubMedGoogle Scholar
  54. Kuzma J, Kokotovich A (2011) Renegotiating GM crop regulation. EMBO Reps 12:883–888Google Scholar
  55. Lee HJ, Kim E, Kim J-S (2010) Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res 20:81–89PubMedCentralPubMedGoogle Scholar
  56. Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC (2009) Site-specific integration of transgene cassettes in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol 151:1087–1095PubMedCentralPubMedGoogle Scholar
  57. Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B (2011) TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 39:359–372PubMedCentralPubMedGoogle Scholar
  58. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390–392PubMedGoogle Scholar
  59. Li J-F, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691PubMedCentralPubMedGoogle Scholar
  60. Liang Z, Zhang K, Chen K, Gao C (2014) Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics 41:63–68PubMedGoogle Scholar
  61. Lloyd A, Plasier CL, Carroll D, Drews GN (2005) Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc Natl Acad Sci USA 102:2232–2237PubMedCentralPubMedGoogle Scholar
  62. Louwerse JD, van Lier MCM, van der Steen DM, de Vlaam CMT, Hooykaas PJJ, Vergunst AC (2007) Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. Plant Physiol 145:1282–1293PubMedCentralPubMedGoogle Scholar
  63. Lozano-Juste J, Cutler SR (2014) Plant genome engineering in full bloom. Trends Plant Sci. doi: 10.1016/j.tplants.2014.02.014 PubMedGoogle Scholar
  64. Lusser M, Davies HV (2013) Comparative regulatory approaches for groups of new plant breeding techniques. New Biotechnol 30:437–4456Google Scholar
  65. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung KJ (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979PubMedCentralPubMedGoogle Scholar
  66. Mahfouz MM, Li L, Shamimuzzaman M, Wibowo A, Fang X, Zhu JK (2011) De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci USA 108:2623–2628PubMedCentralPubMedGoogle Scholar
  67. Mahfouz MM, Li L, Piatek M, Fang X, Mansour H, Bangarusamy DK, Zhu JK (2012) Targeted transcriptional repression using chimeric TALE-SRDX repressor protein. Plant Mol Biol 78:311–321PubMedCentralPubMedGoogle Scholar
  68. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Sci 339:823–826Google Scholar
  69. Mani M, Smith J, Kandavelou K, Berg JM, Chandrasegaran S (2005) Binding of two zinc finger nuclease monomers to two specific sites is required for effective double-strand DNA cleavage. Biochem Biophys Res Commun 334:1191–1197PubMedCentralPubMedGoogle Scholar
  70. Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K (2013) Application of the CRIPSR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011PubMedCentralPubMedGoogle Scholar
  71. Marra MC, Piggott NE, Goodwin BK (2010) The anticipated value of SmartStax™ for US corn growers. AgBioForum 13:1–12Google Scholar
  72. Marton I, Zuker A, Shklarman E, Zeevi V, Tovkach A, Roffe S, Ovadis M, Tzfira T, Vanstein A (2010) Non-transgenic genome modification in plant cells. Plant Physiol 154:1079–1087PubMedCentralPubMedGoogle Scholar
  73. McConnell-Smith A, Takeuchi R, Pellenz S, Davis L, Maizels N, Monnat RJ, Stoddard BL (2009) Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-Anil LAGLIDADG homing endonuclease. Proc Natl Acad Sci 106:5099–5104PubMedCentralPubMedGoogle Scholar
  74. Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL et al (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 25:778–785PubMedGoogle Scholar
  75. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29:143–148PubMedGoogle Scholar
  76. Morbitzer R, Romer P, Boch J, Lahaye T (2010) Regulation of selected genome loci using de novo-engineered transcription activator-like effector (TALE)-type transcription factors. Proc Natl Acad Sci USA 107:21617–21622PubMedCentralPubMedGoogle Scholar
  77. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Sci 326:1501Google Scholar
  78. Nandy S, Srivastava V (2011) Site-specific gene integration in rice genome mediated by the FLP–FRT recombination system. Plant Biotechnol J 9:713–721PubMedGoogle Scholar
  79. Nanto K, Ebinuma H (2008) Marker-free site-specific integration plants. Transgenic Res 17:337–344PubMedGoogle Scholar
  80. Nanto K, Yamada-Watanabe K, Ebinuma H (2005) Agrobacterium-mediated RMCE approach for gene replacement. Plant Biotechnol J 3:203–214PubMedGoogle Scholar
  81. Nanto K, Sato K, Katayama Y, Ebinuma H (2009) Expression of a transgene exchanged by the recombinase mediated cassette (RMCE) method in plants. Plant Cell Rep 28:777–785PubMedGoogle Scholar
  82. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693PubMedGoogle Scholar
  83. Okuzaki A, Toriyama K (2004) Chimeric RNA/DNA oligonucelotide-directed gene targeting in rice. Plant Cell Rep 22:509–512PubMedGoogle Scholar
  84. Osakabe K, Osakabe Y, Toki S (2010) Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases. Proc Natl Acad Sci USA 107:12034–12039PubMedCentralPubMedGoogle Scholar
  85. Ow D (2007) GM maize from site-specific recombination technology, what next? Curr Opin Biotechnol 18:115–120PubMedGoogle Scholar
  86. Paques F, Duchateau P (2007) Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy. Curr Gene Therapy 7:49–66Google Scholar
  87. Parry MAJ, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H, Labhilili M, Phillips AL (2009) Mutation discovery for crop improvement. J Exp Bot 60:2817–2825PubMedGoogle Scholar
  88. Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, Thakore PI, Glass KA, Ousterout DG, Leong KW, Guilak F, Crawford GE, Reddy TE, Gersbach CA (2013) RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10:973–976PubMedCentralPubMedGoogle Scholar
  89. Petolino JF, Worden A, Curlee K, Connell J, Strange Moynahan TL, Larsen C, Russell S (2010) Zinc finger nuclease-mediated transgene deletion. Plant Mol Biol 73:617–628PubMedGoogle Scholar
  90. Porteus MH, Carroll D (2005) Gene targeting using zinc finger nucleases. Nat Biotechnol 23:967–973PubMedGoogle Scholar
  91. Pruett-Miller SM, Reading DW, Porter SN, Porteus MH (2009) Attenuation of zinc finger nuclease toxicity by small-molecule regulation of protein levels. PLoS Genet 5(2):e1000376. doi: 10.1371/journal.pgen.1000376 PubMedCentralPubMedGoogle Scholar
  92. Puchta H (2002) Gene replacement by homologous recombination in plants. Plant Mol Biol 48:173–182PubMedGoogle Scholar
  93. Puchta H (2005) The repair of double stranded DNA breaks in plants. J Exp Bot 56:1–14PubMedGoogle Scholar
  94. Puchta H, Dujon B, Hohn B (1996) Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 93:5055–5060PubMedCentralPubMedGoogle Scholar
  95. Qi Y, Li X, Zhang Y, Starker CG, Baltes NJ, Zhang F, Sander JD, Reyon D, Joung JK, Voytas DF (2013a) Targeted deletion and inversion of tandemly arrayed genes in Arabidopsis thaliana using zinc finger nucleases. G3 3:1707–1715PubMedCentralPubMedGoogle Scholar
  96. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weismann JS, Arkin AP, Lim WA (2013b) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183PubMedCentralPubMedGoogle Scholar
  97. Que Q, Chilton M-D, de Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops. GM Crop 1:220–229Google Scholar
  98. Ramalingam S, Kandavelou K, Rajenderan R, Chandrasegaran S (2011) Creating designed zinc-finger nucleases with minimal cytotoxicity. J Mol Biol 405:630–641PubMedCentralPubMedGoogle Scholar
  99. Sanchez JP, Ullman C, Moore M, Choo Y, Chua NH (2006) Regulation of Arabidopsis thaliana 4-coumarate: coenzyme-A ligase-1 expression by artificial zinc finger chimeras. Plant Biotechnol J 4:103–114PubMedGoogle Scholar
  100. Schornack S, Moscou MJ, Ward ER, Horvath DM (2013) Engineering plant disease resistance based on TAL effectors. Ann Rev Phytopathol 51:383–406Google Scholar
  101. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, Heckl D, Ebert BL, Root D, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Sci 343:84–87Google Scholar
  102. Shan Q, Wang Y, Chen K, Liang Z, Li J, Zhang Y, Zhang K, Liu J, Voytas DF, Zheng X, Zhang Y, Gao C (2013a) Rapid and efficient gene modifications in rice and Brachypodium using TALENs. Mol Plant. doi: 10.1093/mp/ss162 PubMedCentralGoogle Scholar
  103. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L, Gao C (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686–688PubMedGoogle Scholar
  104. Shukla VK, Doyon Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S, Meng X, Choi VM, Rock JM, Wu YY, Katibah GE, Zhifang G, McCaskill D, Simpson MA, Blakeslee B, Greenwalt SA, Butler HJ, Hinkley SJ, Zhang L, Rebar EJ, Gregory PD, Urnov FD (2009) Precise genome modification in the crop species Zea mays using zinc finger nucleases. Nat 259:442–445Google Scholar
  105. Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18:148–153PubMedGoogle Scholar
  106. Srivastava V (2013) Site specific gene integration in rice. In: Rice protocols, methods in molecular biology. vol. 958, Humana Press, Pennsylvania, USA, pp 83–93Google Scholar
  107. Srivastava V, Ow DW (2002) Biolistic site-specific integration in rice. Mol Breeding 8:345–350Google Scholar
  108. Srivastava V, Anderson OD, Ow DW (1999) Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc Natl Acad Sci USA 96:11117–11121PubMedCentralPubMedGoogle Scholar
  109. Srivastava V, Ariza-Nieto M, Wilson AJ (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2:169–179PubMedGoogle Scholar
  110. Stege JT, Guan X, Ho T, Beachy RN, Barbas CF III (2002) Controlling gene expression in plants using zinc finger transcription factor. Plant J 32:1077–1086PubMedGoogle Scholar
  111. Straub A, LaHaye T (2013) Zinc fingers, TAL effectors or Cas9-based DNA binding proteins: What’s best for targeting desired genome loci? Mol Plant 6:1384–1387Google Scholar
  112. Szczepek M, Brondani V, Buchel J, Serrano L, Segal DJ et al (2007) Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol 25:786–793PubMedGoogle Scholar
  113. Tester M, Langridge P (2010) Breeding Technologies to increase crop production in a changing world. Sci 327:818–822Google Scholar
  114. Thomas Scott C (2005) The zinc finger nuclease monopoly. Nat Biotechnol 23:915–918Google Scholar
  115. Tovkach A, Zeevi V, Tzfira T (2009) A toolbox and procedural notes for characterising novel zinc finger nucleases for genome editing in plant cells. Plant J 57:747–757PubMedGoogle Scholar
  116. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nat 459:442–445Google Scholar
  117. Tzfira T, Frankmen L, Vaidya M, Citovsky V (2003) Site-specific integration of Agrobacterium tumefacians T-DNA via double-stranded intermediates. Plant Physiol 133:1011–1023PubMedCentralPubMedGoogle Scholar
  118. Tzfira T, Weinthal D, Marton I, Zeevi V, Zuker A, Vainstein A (2012) Genome modification in plant cells by custom-made restriction enzymes. Plant Biotechnol J 10:373–389PubMedGoogle Scholar
  119. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3 3:2233–2238PubMedCentralPubMedGoogle Scholar
  120. van Nierop GP, de Vries AA, Holkers M, Vrijsen KR, Goncalves MA (2009) Stimulation of homology-directed gene targeting at an endogenous human locus by a nicking endonuclease. Nucleic Acids Res 37:5725–5736PubMedCentralPubMedGoogle Scholar
  121. Vergunst AC, Hooykaas PJJ (1998) Cre/lox-mediated site specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of Cre. Plant Mol Biol 38:393–406PubMedGoogle Scholar
  122. Vergunst AC, Jansen LET, Hooykaas PJJ (1998) Site-specific integration of Agrobacterium T-DNA in Arabidosis thaliana mediated by Cre recombinase. Nucleic Acids Res 26:2729–2734PubMedCentralPubMedGoogle Scholar
  123. Waltz E (2012) Tiptoeing around transgenics. Nat Biotechnol 30:215–217PubMedGoogle Scholar
  124. Wang Y, Yau Y-Y, Perkins-Balding D, Thomson JG (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267–285PubMedCentralPubMedGoogle Scholar
  125. Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014) Simultaneous editing of three homoealleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. doi: 10.1038/nbt.2969 Google Scholar
  126. Weinthal DM, Taylor RA, Tzfira T (2013) Nonhomologous end joining-mediated gene replacement in plant cells. Plant Physiol 162:390–400PubMedCentralPubMedGoogle Scholar
  127. Wendt T, Holm PB, Starker CG, Christian M, Voytas DF, Brinch-Pedersen H, Holme IB (2013) TAL effector nuclease induced mutations at a pre-selected location in the genome of primary barley transformants. Plant Mol Biol 83:279–285PubMedGoogle Scholar
  128. Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J, Lonosky PM, Hall BD, Jondle MD, Voytas DF (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705PubMedGoogle Scholar
  129. Xie K, Yang Y (2013) RNA-guided genome editing plants using a CRISPR-Cas system. Mol Plant 6:1975–1983PubMedGoogle Scholar
  130. Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7:923–926PubMedGoogle Scholar
  131. Xu R, Li H, Qin R, Wang L, Li L, Wei P, Yang J (2014) Gene targeting using the Agrobacterium tumefaciens-mediated CRISPR-Cas system in rice. Rice 7:5PubMedCentralPubMedGoogle Scholar
  132. Yang M, Djukanovic V, Stagg J, Lenderts B, Bidney D, Falco SC, Lyznik LA (2009) Targeted mutagenesis in the progeny of maize transgenics. Plant Mol Biol 70:669–779PubMedGoogle Scholar
  133. Zhang F (2014) CRISPR-Cas systems and methods for altering expression of gene products. US Patent No. 8,697,359Google Scholar
  134. Zhang F, Maeder ML, Unger-Wallace E, Hoshaw JP, Reyon D, Christian M, Li X, Pierick CJ, Dobbs D, Peterson T, Joung KJ, Voytas DF (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci USA 107:12028–12033PubMedCentralPubMedGoogle Scholar
  135. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiol 161:20–27PubMedCentralPubMedGoogle Scholar
  136. Zhang H, Zhang J, Wei O, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu J-K (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J12:797–807Google Scholar
  137. Zhu T, Peterson DJ, Tagliani L, Clair G, Baszczynski CL, Bowen B (1999) Targeted manipulation of maize genes in vivo using chimeric RNA/DNA oligonucleotides. Proc Natl Acad Sci USA 96:8768–8773PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.CSIRO Agriculture FlagshipCanberraAustralia

Personalised recommendations