Molecular Breeding

, Volume 34, Issue 3, pp 1507–1513 | Cite as

Genetic analysis reveals a novel locus in Vicia faba decoupling pigmentation in the flower from that in the extra-floral nectaries

  • Hamid Khazaei
  • Donal M. O’Sullivan
  • Mikko J. Sillanpää
  • Frederick L. Stoddard
Short communication


The genetics of the stipule spot pigmentation (SSP) in faba bean (Vicia faba L.) was studied using four inbred lines, of which Disco/2 was zero-tannin (zt2) with colourless stipule spots, ILB938/2 was normal-tannin (ZT2) with colourless stipule spots, and both Aurora/2 and Mélodie/2 were ZT2 with coloured stipule spots. Crosses Mélodie/2 × ILB 938/2, Mélodie/2 × Disco/2, ILB 938/2 × Aurora/2 and ILB 938/2 × Disco/2 (A, B, C and D, respectively) were prepared, along with reciprocals and backcrosses, and advanced through single-seed descent. All F1 hybrid plants had pigmented stipule spots, and in the F2 generation, the segregation ratio fit 3 coloured:1 colourless in crosses A, B and C and 9:7 in cross D. In the F3 generation, the ratio fit 5:3 in crosses A and C and 25:39 in cross D, and in the F4 generation, 9:7 in cross A. SSP was linked to the zero-tannin characteristics (white flower) only in cross B. The results show that coloured stipule spot is dominant to colourless and that colouration is determined by two unlinked complementary recessive genes. We propose the symbols ssp2 for the gene associated with zt2 in Disco/2 and ssp1 for the gene not associated with tannin content in ILB938/2. The novel ssp1 locus was mapped at F5 in cross ‘A’ using Medicago truncatula-derived single-nucleotide polymorphism and was on chromosome 1 of faba bean, in a well-conserved region of M. truncatula chromosome 5 containing some candidate Myb and basic helix–loop–helix transcription factor genes.


Stipule spot pigmentation Inheritance Vicia faba Synteny Medicago truncatula 



HK expresses his gratitude to CIMO (the Centre for International Mobility) and the Emil Aaltonen Foundation (Emil Aaltosen Säätiö) for their financial support. The project was also supported by the University of Helsinki, Niemi-säätiö and the FP7 project Legume Futures (245216 CP-FP ‘Legume Futures: Legume supported cropping systems for Europe’). We thank Markku Tykkyläinen, Sanna M. Peltola and Sini Lindström, technical assistants of the glasshouses of the University of Helsinki, for their kind assistance during the experiments. We would like to thank Hany El Sayed for his help for microsatellite loci screening. We also thank Prof. Wolfgang Link (Georg-August-University, Göttingen, Germany) for providing the seeds of the parental lines.

Supplementary material

11032_2014_100_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 kb)
11032_2014_100_MOESM2_ESM.pptx (2.2 mb)
Supplementary material 2 (PPTX 2302 kb)
11032_2014_100_MOESM3_ESM.pptx (372 kb)
Supplementary material 3 (PPTX 372 kb)


  1. Alercia A (2011) Key characterization and evaluation descriptors: Methodologies for the assessment of 22 crops. Bioversity International, RomeGoogle Scholar
  2. Anonymous (1985) Faba bean descriptors. AGPG: IBPGR/85/116, 19 pGoogle Scholar
  3. Cottage A, Webb A, Hobbs D, Khamassi K, Maalouf F, Ogbannaya F, Stoddard FL, Duc G, Link W, Thomas JE, O’Sullivan DM (2012) SNP discovery and validation for genomic-assisted breeding of faba bean (Vicia faba L.). In: VI international conference on legume genetics and genomics (ICLGG). October 2–7, 2012. Hyderabad, IndiaGoogle Scholar
  4. Crépon K, Marget P, Peyronnet C, Carrouée B, Arese P, Duc G (2010) Nutritional value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Res 115:329–339CrossRefGoogle Scholar
  5. Crofts HJ, Evans LE, McVetty PBE (1980) Inheritance, characterization and selection of tannin-free faba beans (Vicia faba L.). Can J Plant Sci 60:1135–1140CrossRefGoogle Scholar
  6. Cruz-Izquierdo S, Avila CM, Satovic Z, Palomino C, Gutierrez N, Ellwood SR, Phan HTT, Cubero JI, Torres AM (2012) Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theor Appl Genet 125:1767–1782PubMedCrossRefGoogle Scholar
  7. de Vetten N, Quattrocchio F, Mol J, Koes R (1997) The an11 locus controlling flower pigmentation in petunia encodes a novel WD-repeat protein conserved in yeast, plants, and animals. Genes Dev 11:1422–1434PubMedCrossRefGoogle Scholar
  8. Ellwood SR, Phan HTT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genom 9:380CrossRefGoogle Scholar
  9. Erith AG (1930) The inheritance of colour, size form of seeds, and of flower colour in Vicia faba L. Genetica 12:477–510CrossRefGoogle Scholar
  10. Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827PubMedCrossRefGoogle Scholar
  11. Gutierrez N, Avila CM, Duc G, Marget P, Suso MJ, Moreno MT, Torres AM (2006) CAPs markers to assist selection for low vicine and convicine content in faba bean (Vicia faba L.). Theor Appl Genet 114:59–66PubMedCrossRefGoogle Scholar
  12. Gutierrez N, Avila CM, Rodriguez-Suarez C, Moreno MT, Torres AM (2007) Development of SCAR markers linked to a gene controlling absence of tannins in faba bean. Mol Breed 19:305–314CrossRefGoogle Scholar
  13. Gutierrez N, Avila CM, Moreno MT, Torres AM (2008) Development of SCAR markers linked to zt-2, one of the genes controlling absence of tannins in faba bean. Aust J Agric Res 59:62–68CrossRefGoogle Scholar
  14. Kaur S, Pembleton LW, Cogan NOI, Savin KW, Leonforte T, Paull J, Materne M, Forster JW (2012) Transcriptome sequencing of field pea and faba bean for discovery and validation of SSR markers. BMC Genom 13:104CrossRefGoogle Scholar
  15. Khazaei H, Street K, Bari A, Mackay M, Stoddard FL (2013) The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS ONE 8:e63107PubMedCrossRefPubMedCentralGoogle Scholar
  16. Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  17. Link W, Hanafy M, Malenica N, Jacobsen H-J, Jelenić S (2008) Broad bean. In: Kole C, Hall TC (eds) A compendium of transgenic crop plants: transgenic legume grains and forages, vol 3. Wiley, New York, pp 71–88Google Scholar
  18. Lorieux M (2012) MapDisto: fast and efficient computation of genetic linkage map. Mol Breed 30:1231–1235CrossRefGoogle Scholar
  19. Metz PLJ, van Norel A, Buiel AAM, Helsper JPFG (1992) Inheritance of seedling colour in faba bean (Vicia faba L.). Euphytica 59:231–234CrossRefGoogle Scholar
  20. Picard J (1976) Aperçu sur l’héredité du caractère absence de tannins dans les graines de féverole (Vicia faba L.). Ann Amélio Plantes 26:101–106Google Scholar
  21. Požárková D, Koblížková A, Román B, Torres AM, Lucretti S, Lysák M, Doležel J, Macas J (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plant 45:337–345CrossRefGoogle Scholar
  22. R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0.
  23. Robertson LD, El-Sherbeeny M (1991) Distribution of discretely scored descriptors in a pure line faba bean (Vicia faba L.) germplasm collection. Euphytica 57:83–92Google Scholar
  24. Rowlands DG, Corner JJ (1962) Genetics of pigmentation in broad beans (Vicia faba L.). In: Proceedings of 3rd congress, Eucarpia, Paris, pp 229–234Google Scholar
  25. Satovic Z, Avila CM, Cruz-Izquierdo S, Díaz-Ruíz R, García-Ruíz GM, Palomino C, Gutiérrez N, Vitale S, Ocaña-Moral S, Gutiérrez MV, Cubero JI, Torres AM (2013) A reference consensus genetic map for molecular markers and economically important traits in faba bean (Vicia faba L.). BMC Genom 14:932CrossRefGoogle Scholar
  26. Schwinn K, Venail J, Shang Y, Mackay S, Alm V, Butelli E, Oyama R, Bailey P, Davies K, Martin C (2006) A small family of MYB-regulatory genes controls floral pigmentation intensity and patterning in the genus Antirrhinum. Plant Cell 18:831–851PubMedCrossRefPubMedCentralGoogle Scholar
  27. Sjödin J (1971) Induced morphological variation in Vicia faba L. Hereditas 67:155–180CrossRefGoogle Scholar
  28. Stoddard FL, Bond DA (1987) The pollination requirements of the faba bean. Bee World 68:144–152Google Scholar
  29. Tai HH, Goyer C, Murphy AM (2013) Potato MYB and bHLH transcription factors associated with anthocyanin intensity and common scab resistance. Botany 91:722–730CrossRefGoogle Scholar
  30. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  31. Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130:4859–4869PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Hamid Khazaei
    • 1
  • Donal M. O’Sullivan
    • 2
  • Mikko J. Sillanpää
    • 3
    • 4
  • Frederick L. Stoddard
    • 1
  1. 1.Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
  3. 3.Department of Mathematical SciencesUniversity of OuluOuluFinland
  4. 4.Department of Biology and Biocenter OuluUniversity of OuluOuluFinland

Personalised recommendations