Skip to main content
Log in

Jointly silencing BoDWARF, BoGA20ox and BoSP (SELF-PRUNING) produces a novel miniature ornamental Brassica oleracea var. acephala f. tricolor variety

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The ornamental Brassica oleracea var. acephala f. tricolor is a good winter and spring foliage plant. Plant architecture is an important agronomic trait of plants, especially for ornamental plants with high ornamental and economic value. In this study, three miniature-related genes, BoDWARF, BoGA20ox and BoSP (SELF-PRUNING), were cloned and their tissue-specific expression patterns were analyzed. The results showed that the three genes were all highly expressed in young leaves and flowers, followed by the lateral roots, seeds and stems. To further achieve the purpose of miniaturization of plants, an RNAi expression vector, jointly targeting BoDWARF, BoGA20ox and BoSP, was constructed and transformed into kale plants. Smaller plant size and slower growth and development speed of flowers and roots were observed in jointly silenced kales. Brassinosteroids and gibberellin contents in leaves and flower buds of transgenic plants were significantly decreased. Furthermore, the expressions of brassinolide-, gibberellin- and flowering-related genes were down-regulated by varying degrees in silenced plants. These results suggest that BoDWARF, BoGA20ox and BoSP play important roles in plant architecture, and that brassinolide and gibberellin are important hormones controlling plant growth and architecture. This miniaturization strategy of kale provides an efficient approach for cultivation of new varieties of ornamental plants and crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a giMicroRNAn-regulated microRNA. Sci Signal 131(14):3357

    CAS  Google Scholar 

  • Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25(3):605–614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Altmann T (1999) Molecular physiology of brassinosteroids revealed by the analysis of mutants. Planta 208(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Alvarez J, Guli CL, Yu XH, Smyth DR (2005) Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J 2(1):103–116

    Article  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Azpiroz R, Wu Y, LoCascio JC, Feldmann KA (1998) An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell Online 10(2):219–230

    Article  CAS  Google Scholar 

  • Bai M-Y, Shang J-X, Oh E, Fan M, Bai Y, Zentella R, Sun T, Wang Z-Y (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat Cell Biol 14(8):810–817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134(4):1624–1631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop G (2003) Brassinosteroid mutants of crops. J Plant Growth Regul 22(4):325–335

    Article  CAS  PubMed  Google Scholar 

  • Bishop GJ (2007) Refining the plant steroid hormone biosynthesis pathway. Trends Plant Sci 12(9):377–380

    Article  CAS  PubMed  Google Scholar 

  • Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JD, Kamiya Y (1999) The tomato DWARF enzyme catalyses C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96(4):1761–1766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797

    Article  CAS  PubMed  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275(5296):80–83

    Article  CAS  PubMed  Google Scholar 

  • Cai P, Long H, Deng G, Pan Z, Peng Z, Yu M (2012) Molecular cloning, characterization, and expression analysis of genes encoding gibberellin 20-oxidase in Dasypyrum villosum dwarf mutant. Plant Mol Biol Rep 30(5):1110–1116

    Google Scholar 

  • Calvert A (1965) Flower initiation and development in the tomato. Natl Agric Advis Serv Q Rev 70:79–88

    Google Scholar 

  • Campbell P, Braam J (1998) Co-and/or post-translational modifications are critical for TCH4 XET activity. Plant J 15(4):553–561

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Shelton A, Earle E (2005) Development of transgenic collards (Brassica oleracea L., var. acephala) expressing a cry1Ac or cry1C Bt gene for control of the diamondback moth. Crop Prot 24(9):804–813

    Article  CAS  Google Scholar 

  • Carmel-Goren L, Liu YS, Lifschitz E, Zamir D (2003) The SELF-PRUNING gene family in tomato. Plant Mol Biol 52(6):1215–1222

    Article  CAS  PubMed  Google Scholar 

  • Chai Y-m, Zhang Q, Tian L, Li C-L, Xing Y, Qin L, Shen Y–Y (2013) Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul 69(1):63–69

    Article  CAS  Google Scholar 

  • Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136(1):2641–2651

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Christodoulou A, Weaver R, Pool R (1968) Relation of gibberellin treatment to fruit-set, berry development, and cluster compactness in Vitis vinifera grapes. In: Proceedings of American Soc. Hort. Sci, pp 301–310

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell Online 23(4):1219–1230

    Article  CAS  Google Scholar 

  • Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Biol 49(1):427–451

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118(2):333–339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407(6802):321–326

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146(1):250–264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • David C, Tempé J (1988) Genetic transformation of cauliflower (Brassica oleracea L. var. botrytis) by Agrobacterium rhizogenes. Plant Cell Rep 7(2):88–91

    Article  CAS  PubMed  Google Scholar 

  • De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91(2):694–701

    Article  PubMed Central  PubMed  Google Scholar 

  • De Grauwe L, Vandenbussche F, Tietz O, Palme K, Van Der Straeten D (2005) Auxin, ethylene and brassinosteroids: tripartite control of growth in the Arabidopsis hypocotyl. Plant Cell Physiol 46(6):827–836

    Article  PubMed  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21(9):R365–R373

    Article  CAS  PubMed  Google Scholar 

  • Diener AC, Li H, Zhou W, Whoriskey WJ, Nes WD, Fink GR (2000) Sterol methyltransferase 1 controls the level of cholesterol in plants. Plant Cell Online 12(6):853–870

    Article  CAS  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ (2007) Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134(15):2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Evans LT (1998) Feeding the ten billion: plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93(16):8449–8454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421(6924):740–743

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Li J, Choi Y-H, Seto H, Takatsuto S, Noguchi T, Watanabe T, Kuriyama H, Yokota T, Chory J (1997) The Arabidopsis deetiolated 2 mutant is blocked early in brassinosteroid biosynthesis. Plant Cell Online 9(11):1951–1962

    Article  CAS  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54(1):137–164

    Article  CAS  PubMed  Google Scholar 

  • Groot SP, Bruinsma J, Karssen CM (1987) The role of endogenous gibberellin in seed and fruit development of tomato: studies with a gibberellin-deficient mutant. Physiol Plant 71(2):184–190

    Article  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19(1):5–9

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Hoad GV (1994) Growth regulators and crop productivity. Marcel Dekker, New York

    Google Scholar 

  • Hosoki T, Shiraishi K, Kigo T, Ando M (1989) Transformation and regeneration of ornamental kale (Brassica oleracea var. acephala DC) mediated by Agrobacterium rhizogenes. Sci Hortic 40(3):259–266

    Article  Google Scholar 

  • Iliev EA, Xu W, Polisensky DH, Oh M-H, Torisky RS, Clouse SD, Braam J (2002) Transcriptional and posttranscriptional regulation of Arabidopsis TCH4 expression by diverse stimuli. Roles of cis regions and brassinosteroids. Plant Physiol 130(2):770–783

    Article  PubMed Central  PubMed  Google Scholar 

  • Kende H, Lang A (1964) Gibberellins and light inhibition of stem growth in peas. Plant Physiol 39(3):435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim T-W, Wang Z-Y (2010) Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu Rev Plant Biol 61:681–704

    Article  CAS  PubMed  Google Scholar 

  • Koorneef M, Elgersma A, Hanhart C, Loenen-Martinet E, Rijn L, Zeevaart J (1985) A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65(1):33–39

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Lee S, Yang K-Y, Kim Y-M, Park S-Y, Kim SY, Soh M-S (2006) Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses in Arabidopsis thaliana. Plant Cell Physiol 47(5):591–600

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90(5):929–938

    Article  CAS  PubMed  Google Scholar 

  • Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell Online 11(6):1007–1018

    Article  CAS  Google Scholar 

  • Liu F, Han S, Zhang Y, Wang G, Lu K, Zong M, Si Y (2012) A new ornamental cabbage hybrid ‘Beijing Peony Red 2’. Acta Hortic Sin 39:401–402

    Google Scholar 

  • MacArthur JW (1932) Inherited characters in the tomato 1. The self-pruning habit. J Hered 23(10):395–396

    Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2004) Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J 37(5):720–729

    Article  CAS  PubMed  Google Scholar 

  • Mandava NB (1988) Plant growth-promoting brassinosteroids. Ann Rev Plant Physiol Plant Mol Biol 39(1):23–52

    Article  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360(6401):273–277

    Article  CAS  PubMed  Google Scholar 

  • Martí E, Gisbert C, Bishop GJ, Dixon MS, García-Martínez JL (2006) Genetic and physiological characterization of tomato cv. Micro-Tom. J Exp Bot 57(9):2037–2047

    Article  PubMed  Google Scholar 

  • Meng Z, Xu D, Wang J (2005) Tissue culture of ornamental kale. J Wuhan Univ (Natural Science Edition) S2 51:273–277

    Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35(5):613–623

    Article  CAS  PubMed  Google Scholar 

  • Nakamura A, Higuchi K, Goda H, Fujiwara MT, Sawa S, Koshiba T, Shimada Y, Yoshida S (2003) Brassinolide induces IAA5, IAA19, and DR5, a synthetic auxin response element in Arabidopsis, implying a cross talk point of brassinosteroid and auxin signaling. Plant Physiol 133(4):1843–1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121(3):743–752

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nomoto Y, Kubozono S, Miyachi M, Yamashino T, Nakamichi N, Mizuno T (2012a) A circadian clock-and PIF4-mediated double coincidence mechanism is implicated in the thermosensitive photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol 53(11):1965–1973

    Article  CAS  PubMed  Google Scholar 

  • Nomoto Y, Kubozono S, Yamashino T, Nakamichi N, Mizuno T (2012b) Circadian clock- and PIF4-controlled plant growth: a coincidence mechanism directly integrates a hormone signaling network into the photoperiodic control of plant architectures in Arabidopsis thaliana. Plant Cell Physiol 53(11):1950–1964

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Zhu J-Y, Wang Z-Y (2012) Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat Cell Biol 14(8):802–809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Olszewski N, Sun T, Gubler F (2002) Gibberellin signaling biosynthesis, catabolism, and response pathways. Plant Cell Online 14(Suppl 1):S61–S80

    CAS  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400(6741):256–261

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125(11):1979–1989

    CAS  PubMed  Google Scholar 

  • Poulsen G (1996) Genetic transformation of Brassica. Plant Breed 115(4):209–225

    Article  CAS  Google Scholar 

  • Qi J, Yu S, Zhang F, Shen X, Zhao X, Yu Y, Zhang D (2010) Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Rep 28(4):597–604

    Google Scholar 

  • Qiao F, Zhao K-J (2011) The influence of RNAi targeting of OsGA20ox2 gene on plant height in rice. Plant Mol Biol Rep 29(4):952–960

    Article  CAS  Google Scholar 

  • Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125(9):1609–1615

    CAS  PubMed  Google Scholar 

  • Ross JJ, O’Neill DP, Wolbang CM, Symons GM, Reid JB (2001) Auxin-gibberellin interactions and their role in plant growth. J Plant Growth Regul 20(4):336–353

    Article  PubMed  Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5(5):301–307

    Article  CAS  PubMed  Google Scholar 

  • Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459(7250):1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416(6882):701–702

    Article  CAS  PubMed  Google Scholar 

  • Schlagnhaufer CD, Arteca RN (1985) Brassinosteroid-induced epinasty in tomato plants. Plant Physiol 78(2):300–303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scott JW (1989) Micro-Tom—a miniature dwarf tomato. Florida Agric Exp Stn Circ 370:1–6

    Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126(2):770–779

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Souter M, Topping J, Pullen M, Friml J, Palme K, Hackett R, Grierson D, Lindsey K (2002) Hydra mutants of Arabidopsis are defective in sterol profiles and auxin and ethylene signaling. Plant Cell Online 14(5):1017–1031

    Article  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99(13):9043–9048

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sui J-M, Guo B-T, Wang J-S, Qiao L-X, Zhou Y, Zhang H-G, Gu M-H, Liang G-H (2012) A new GA-insensitive semidwarf mutant of rice (Oryza sativa L.) with a missense mutation in the SDG gene. Plant Mol Biol Rep 30(1):187–194

    Article  CAS  Google Scholar 

  • Szekeres M, Németh K, Koncz-Kálmán Z, Mathur J, Kauschmann A, Altmann T, Rédei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85(2):171–182

    Article  CAS  PubMed  Google Scholar 

  • Topping JF, May VJ, Muskett PR, Lindsey K (1997) Mutations in the HYDRA1 gene of Arabidopsis perturb cell shape and disrupt embryonic and seedling morphogenesis. Development 124(21):4415–4424

    CAS  PubMed  Google Scholar 

  • Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun T (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135(2):1008–1019

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vandenbussche F, Callebert P, Zadnikova P, Benkova E, Van Der Straeten D (2013) Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components. Am J Bot 100(1):215–225

    Article  CAS  PubMed  Google Scholar 

  • Went F (1944) Morphological observations on the tomato plant. Bull Torrey Bot Club 71(1):77–92

    Article  Google Scholar 

  • Wilson RN, Heckman JW, Somerville CR (1992) Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol 100(1):403–408

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • XiuShu Z, MingYang L, WenLing Z, Fan L (2009) Establishment of high adventitious shoot regeneration system of ornamental kale. Genomics Appl Biol 28(1):141–148

    Google Scholar 

  • Xu J, Hofhuis H, Heidstra R, Sauer M, Friml J, Scheres B (2006) A molecular framework for plant regeneration. Sci Signal 311(5759):385

    CAS  Google Scholar 

  • Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell Online 7(10):1555–1567

    Article  CAS  Google Scholar 

  • Yeager A (1927) Determinate growth in the tomato. J Hered 18(6):263–265

    Google Scholar 

  • Yin C, Gan L, Ng D, Zhou X, Xia K (2007) Decreased panicle-derived indole-3-acetic acid reduces gibberellin level in the uppermost internode, causing panicle enclosure in male sterile rice Zhenshan 97A. J Exp Bot 58(10):2441–2449

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Hu Z, Zhang Y, Li Y, Zhou S, Chen G (2012) A putative functional MYB transcription factor induced by low temperature regulates anthocyanin biosynthesis in purple kale (Brassica oleracea var. acephala f. tricolor). Plant Cell Rep 31(2):281–289

    Article  PubMed  Google Scholar 

  • Zhao J, Lu B, Zhao M (2004) Plant regeneration from cotyledons of Chinese cabbage cultured in vitro. Acta Agric Boreali-Sin 2:005

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31171968) and Natural Science Foundation of Chongqing of China (No. cstc, 2011BB1068), and the Fundamental Research Funds for the Central Universities (No. CDJXS11232244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongli Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 51 kb)

Supplementary material 2 (DOC 42 kb)

11032_2014_20_MOESM3_ESM.tif

Supplemental Fig. 1 Multiple sequence alignment and phylogenetic analysis of BoDWARF and other cytochrome P450 family proteins. a. Multiple sequence alignment of BoDWARF and other cytochrome P450 family proteins. BoDWARF is marked with an asterisk. Identical amino acids are shaded in black, and similar amino acids are shaded in gray. b. Phylogenetic analysis of BoDWARF and other proteins were constructed by the neighbor-joining method, bootstrap analysis of 1000 replicates. BoDWARF is marked with an asterisk. Accession numbers and corresponding references for the proteins listed are as follows: SlDWARF (NM_001247334.1), AtDWARF (NP_566852.1), NtDWARF (XP_002330918.1), GmDWARF (XP_003554965.1), VvDWARF (ABB60086.1), ZmDWARF (AET06165.1), BoDWARF (Bol032288), CsDWARF (XP_004141472.1), BrDWARF (Bra020747). (TIFF 582 kb)

11032_2014_20_MOESM4_ESM.tif

Supplemental Fig. 2 Multiple sequence alignment and phylogenetic analysis of BoGA20ox and other GA20ox proteins. a. Multiple sequence alignment of BoGA20ox and other GA20ox proteins. BoGA20ox is marked with an asterisk. Identical amino acids are shaded in black, and similar amino acids are shaded in gray. b. Phylogenetic analysis of BoGA20ox and other GA20ox proteins were constructed by the neighbor-joining method, bootstrap analysis of 1000 replicates. BoGA20ox is marked with an asterisk. Accession numbers and corresponding references for the proteins listed are as follows: AtGA20ox (NM_118674.4), BoGA20ox (Bol042237), BrGA20ox (Bra013890), RsGA20ox (BAM73279.1), ZmGA20ox (NM_001254854.1), SlGA20ox (NM_001247141.1), PtGA20ox (JX305461.1). (TIFF 398 kb)

11032_2014_20_MOESM5_ESM.tif

Supplemental Fig. 3 Multiple sequence alignment and phylogenetic analysis of BoSP and other PEBP family proteins. a. Multiple sequence alignment of BoSP and other PEBP family proteins. BoSP is marked with an asterisk. Identical amino acids are shaded in black, and similar amino acids are shaded in gray. b. Phylogenetic analysis of the BoSP and other proteins were constructed by the neighbor-joining method, bootstrap analysis of 1000 replicates. BoSP is marked with an asterisk. Accession numbers and corresponding references for the proteins listed are as follows: AtTFL1 (U77674.1), BoSP (Bol026421), BrSP (Bra000506), SlSP (NM_001247045), AmCEN (S81193), CaSP (CAI38702), OsSP (NP_001173006), GhTF1 (ABW24963), ZmZCN2 (NP_001106241), GM-CEN like3 (ACU00129), VvTFL1a (XP_002276820), ScPEBP1 (1WPX_B), MmPEBP1 (AAG25635), HsPEBP1 (NP_002558). (TIFF 533 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Q., Chen, G., Chen, X. et al. Jointly silencing BoDWARF, BoGA20ox and BoSP (SELF-PRUNING) produces a novel miniature ornamental Brassica oleracea var. acephala f. tricolor variety. Mol Breeding 34, 99–113 (2014). https://doi.org/10.1007/s11032-014-0020-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0020-8

Keywords

Navigation