Skip to main content
Log in

QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Bacterial wilt (Burkholderia caryophylli (Burkholder) Yabuuchi et al.) is one of the most damaging diseases during carnation (Dianthus caryophyllus L.) cultivation in Japan. To find molecular markers for use in marker-assisted selection, we constructed a simple sequence repeat (SSR)-based genetic linkage map of carnation using an F2 population of 90 plants derived from a cross between a highly resistant line (85-11) and a susceptible cultivar (Pretty Favvare). To develop a large number of SSR markers, we constructed four new SSR-enriched genomic libraries and conducted expressed sequence tag analysis. We mapped 178 SSR loci into 16 linkage groups. The map covered 843.6 cM, with an average distance of 6.5 cM between two loci. This is the first report of a genetic linkage map based mainly on SSR markers in the genus Dianthus. Quantitative trait locus (QTL) analysis identified one locus for resistance to bacterial wilt in linkage group (LG) B4. The locus explained 63.0% of the phenotypic variance for resistance to bacterial wilt. The SSR markers CES1161 and CES2643 that were closest to the QTL were efficient markers for selecting lines with resistance derived from line 85-11. A positional comparison using SSR markers as anchor loci revealed that LG B4 corresponded to LG A6 in a previously constructed map. We found that the position of the resistance locus derived from line 85-11 was similar to that of the major resistance locus observed for a highly resistant wild species, Dianthus capitatus ssp. andrzejowskianus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abe H, Nakano M, Nakatsuka A, Nakayama M, Koshioka M, Yamagishi M (2002) Genetic analysis of floral anthocyanin pigmentation traits in Asiatic hybrid lily using molecular linkage maps. Theor Appl Genet 105:1175–1182

    Article  PubMed  CAS  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, Fukuzawa H, Tabata S (1999) A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3,433 non-redundant expressed sequence tags. DNA Res 6:369–373

    Article  PubMed  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitan-Solis E, Beebe SE, Gepts P, Tohme J (2003) Development of a genome-wide anchored microsatellite map for common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  PubMed  CAS  Google Scholar 

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. BioTechniques 20:1004–1010

    PubMed  CAS  Google Scholar 

  • Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WE, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Cho YG, Ishii T, Temnykh S, Chen X, Lipovich L, McCouch SR, Park WD, Ayres N, Cartinhour S (2000) Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice (Oryza sativa L.). Theor Appl Genet 100:713–722

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Crespel L, Chirollet M, Durel CE, Zhang D, Meynet J, Gudin S (2002) Mapping of qualitative and quantitative phenotypic traits in Rosa using AFLP markers. Theor Appl Genet 105:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • De Benedetti L, Burchi G, Bruna S, Mercuri A, Schiva T (2003) Use of molecular markers to improve cut flowers longevity in carnation. Acta Hort 624:343–348

    Google Scholar 

  • Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899

    Article  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294

    PubMed  CAS  Google Scholar 

  • Dugo ML, Satovic Z, Millan T, Cubero JI, Rubiales D, Cabrera A, Torres AM (2005) Genetic mapping of QTLs controlling horticultural traits in diploid roses. Theor Appl Genet 111:511–520

    Article  PubMed  CAS  Google Scholar 

  • Dunemann F, Kahnau R, Stange I (1999) Analysis of complex leaf and flower characters in Rhododendron using a molecular linkage map. Theor Appl Genet 98:1146–1155

    Article  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using Phred. II. Error probabilities. Genome Res 8:186–194

    PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Fukuoka H, Nunome T, Minamiyama Y, Kono I, Namiki N, Kojima A (2005) Read2Marker: a data processing tool for microsatellite marker development from a large data set. Biotechniques 39:472–476

    Article  PubMed  CAS  Google Scholar 

  • Galbally J, Galbally E (1997) Carnation and pinks for garden and greenhouse. Timber Press, Portland

    Google Scholar 

  • Hamilton RFL, Walters SM (1989) Dianthus Linnaeus. In: Walters SM, Alexander JCM, Brady A, Brickell CD, Cullen J, Green PS, Heywood VH, Matthews VA, Robson NKB, Yeo PF, Knees SG (eds) The European garden flora, vol 3. Cambridge University Press, Cambridge, pp 185–191

    Google Scholar 

  • Hibrand-Saint Oyant L, Crespel L, Rajapakse S, Zhang L, Foucher F (2008) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4:11–23

    Article  Google Scholar 

  • Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of recent progress in plants. Euphytica 177:309–334

    Article  CAS  Google Scholar 

  • Kawamura K, Hibrand-Saint Oyant L, Crespel L, Thouroude T, Lalanne D, Foucher F (2011) Quantitative trait loci for flowering time and inflorescence architecture in rose. Theor Appl Genet 122:661–675

    Article  PubMed  Google Scholar 

  • Kimura T, Yagi M, Nishitani C, Onozaki T, Ban Y, Yamamoto T (2009) Development of SSR markers in carnation (Dianthus caryophyllus). J Jpn Soc Hort Sci 78:115–123

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lashermes P, Combes MC, Prakash NS, Trouslot P, Lorieux M, Charrier A (2001) Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome 44:589–596

    PubMed  CAS  Google Scholar 

  • Moriya S, Iwanami H, Kotoda N, Takahashi S, Yamamoto T, Abe K (2009) Development of a marker-assisted selection system for columnar growth habit in apple breeding. J Jpn Soc Hort Sci 78:279–287

    Article  CAS  Google Scholar 

  • Moriya S, Iwanami H, Takahashi S, Kotoda N, Suzaki K, Yamamoto T, Abe K (2010) Genetic mapping of the crown gall resistance gene of the wild apple Malus sieboldii. Tree Genet Genomes 6:195–203

    Article  Google Scholar 

  • Nunome T, Negoro S, Miyatake K, Yamaguchi H, Fukuoka H (2006) A protocol for the construction of microsatellite enriched genomic library. Plant Mol Biol Rep 24:305–312

    Article  CAS  Google Scholar 

  • Onozaki T, Yamaguchi T, Himeno M, Ikeda H (1999a) Evaluation of 277 carnation cultivars for resistance to bacterial wilt (Pseudomonas caryophylli). J Jpn Soc Hort Sci 68:546–550

    Article  Google Scholar 

  • Onozaki T, Yamaguchi T, Himeno M, Ikeda H (1999b) Evaluation of wild Dianthus accessions for resistance to bacterial wilt (Pseudomonas caryophylli). J Jpn Soc Hort Sci 68:974–978

    Article  Google Scholar 

  • Onozaki T, Ikeda H, Yamaguchi T (2001) Genetic improvement of vase life of carnation flowers by crossing and selection. Sci Hort 87:107–120

    Article  Google Scholar 

  • Onozaki T, Tanikawa N, Taneya M, Kudo K, Funayama T, Ikeda H, Shibata M (2004) A RAPD-derived STS marker is linked to a bacterial wilt (Burkholderia caryophylli) resistance gene in carnation. Euphytica 138:255–262

    Article  CAS  Google Scholar 

  • Onozaki T, Ikeda H, Shibata M, Tanikawa N, Yagi M, Yamaguchi T, Amano M (2006a) Breeding process and characteristics of Carnation Norin No. 1 ‘Miracle Rouge’ and No. 2 ‘Miracle Symphony’ with long vase life. Bull Natl Ins Flor Sci 5:1–16 (Japanese with English summary)

    Google Scholar 

  • Onozaki T, Tanikawa N, Yagi M, Ikeda H, Sumitomo K, Shibata M (2006b) Breeding of carnations (Dianthus caryophyllus L.) for long vase life and rapid decrease in ethylene sensitivity of flowers after anthesis. J Jpn Soc Hort Sci 75:256–263

    Article  CAS  Google Scholar 

  • Onozaki T, Yoshinari T, Yoshimura T, Yagi M, Yoshioka S, Taneya M, Shibata M (2006c) DNA markers linked to a recessive gene controlling single flower type derived from wild species, Dianthus capitatus ssp. andrzejowskianus. Hort Res (Jpn) 5:363–367

    Article  CAS  Google Scholar 

  • Rajapakse S, Byrne DH, Zhang L, Anderson N, Arumuganathan K, Ballard RE (2001) Two genetic linkage maps of tetraploid roses. Theor Appl Genet 103:575–583

    Article  CAS  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sato S, Isobe S, Asamizu E, Ohmido N, Kataoka R, Nakamura Y, Kaneko T, Sakurai N, Okumura K, Klimenko I, Sasamoto S, Wada T, Watanabe A, Kohara M, Fujishiro T, Tabata S (2005) Comprehensive structural analysis of the genome of red clover (Trifolium pratense L.). DNA Res 12:301–364

    Article  PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Scovel G, Ben-Meir H, Ovadis M, Itzhaki H, Vainstein A (1998) RAPD and RFLP markers tightly linked to the locus controlling carnation (Dianthus caryophyllus) flower type. Theor Appl Genet 96:117–122

    Article  CAS  Google Scholar 

  • Scovel G, Ovadis M, Vainstein A, Reuven M, Ben-Yephet Y (2001) Marker assisted selection for resistance to Fusarium oxysporum in the greenhouse carnation. Acta Hort 552:151–156

    CAS  Google Scholar 

  • Smulders MJM, Rus-Kortekaas W, Vosman B (2000) Microsatellite markers useful throughout the genus Dianthus. Genome 43:208–210

    PubMed  CAS  Google Scholar 

  • Smulders MJM, Noordijk Y, Rus-Kortekaas W, Bredemeijer GMM, Vosman B (2003) Microsatellite genotyping of carnation varieties. Theor Appl Genet 106:1191–1195

    PubMed  CAS  Google Scholar 

  • Spiller M, Berger RG, Debener T (2010) Genetic dissection of scent metabolic profiles in diploid rose populations. Theor Appl Genet 120:1461–1471

    Article  PubMed  CAS  Google Scholar 

  • Spiller M, Linde M, Hibrand-Saint Oyant L, Tsai C, Byrne D, Smulders M, Foucher F, Debener T (2011) Towards a unified genetic map for diploid roses. Theor Appl Genet 122:489–500

    Article  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Vainstein A, Hillel J, Lavi U, Tzuri G (1991) Assessment of genetic relatedness in carnation by DNA fingerprint analysis. Euphytica 56:225–229

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007). Windows QTL cartographer 2.5. Department of statistics, North Carolina State University, Raleigh. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang J, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and phenotypic traits. BMC Genomics 7:206

    Article  PubMed  Google Scholar 

  • Yagi M, Onozaki T, Taneya M, Watanabe H, Yoshimura T, Yoshinari T, Ochiai Y, Shibata M (2006a) Construction of a genetic linkage map for the carnation by using RAPD and SSR markers and mapping quantitative trait loci (QTL) for resistance to bacterial wilt caused by Burkholderia caryophylli. J Jpn Soc Hort Sci 75:166–172

    Article  CAS  Google Scholar 

  • Yagi M, Onozaki T, Tanikawa N, Shibata M (2006b) Molecular marker assisted selection in breeding for resistance to bacterial wilt in carnation(Dianthus caryophyllus L.). Hort Res (Jpn) 5:241–245 (Japanese with English summary)

    Article  CAS  Google Scholar 

  • Yagi M, Kimura T, Yamamoto T, Onozaki T (2009) Estimation of ploidy levels and breeding backgrounds in pot carnation cultivars using flow cytometry and SSR markers. J Jpn Soc Hort Sci 78:335–343

    Article  CAS  Google Scholar 

  • Yagi M, Onozaki T, Ikeda H, Tanikawa N, Shibata M, Yamaguchi T, Tanase K, Sumitomo K, Amano M (2010) Breeding process and characteristics of carnation ‘Karen Rouge’ with resistance to bacterial wilt. Bull Natl Inst Flor Sci 10:1–10 (Japanese with English summary)

    Google Scholar 

  • Yan Z, Denneboom C, Hattendorf A, Dolstra O, Debener T, Stam P, Visser PB (2005) Construction of an integrated map of rose with AFLP, SSR, PK, RGA, RFLP, SCAR and morphological markers. Theor Appl Genet 110:766–777

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

  • Zhang LH, Byrne DH, Ballard RE, Rajapakse S (2006) Microsatellite marker development in rose and its application in tetraploid mapping. J Am Soc Hort Sci 131:380–387

    Article  CAS  Google Scholar 

  • Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2010) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Mol Breed 27:11–23. doi:10.1007/s11032-010-9409-1

    Article  CAS  Google Scholar 

  • Ziegle JS, Su Y, Corcoran KP, Nie L, Mayrand PE, Hoff LB, McBride LJ, Kronick MN, Diehl SR (1992) Application of automated DNA sizing technology for genotyping microsatellite loci. Genomics 14:1026–1031

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Agriculture and Food Research Organization Research Project No. 211, “Establishment of Integrated Basis for Development and Application of Advanced Tools for DNA Marker-Assisted Selection in Horticultural Crops”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yagi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, M., Kimura, T., Yamamoto, T. et al. QTL analysis for resistance to bacterial wilt (Burkholderia caryophylli) in carnation (Dianthus caryophyllus) using an SSR-based genetic linkage map. Mol Breeding 30, 495–509 (2012). https://doi.org/10.1007/s11032-011-9639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9639-x

Keywords

Navigation