Skip to main content
Log in

The Mutant Form of Acetolactate Synthase Genomic DNA from Rice is an Efficient Selectable Marker for Genetic Transformation

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The proper use of a marker gene in a transformation process is critical for the production of transgenic plants. However, consumer concerns and regulatory requirements raise an objection to the presence of exogenous DNA in transgenic plants, especially antibiotic-resistant genes and promoters derived from viruses. One approach to overcome this problem is the elimination of marker genes from the plant genome by using several site-specific recombination systems. We propose an alternative method to solve this problem using a marker gene exclusively derived from the host plant DNA. We cloned a genomic DNA fragment containing regulatory and coding sequences of acetolactate synthase (ALS) gene from rice, and mutagenized the ALS gene into a herbicide-resistant form. After transfer of this construct to the rice genome, transgenic plants were efficiently selected with a herbicide, bispyribac-sodium salt, which inhibits the activity of wild type ALS. We also analyzed the regulatory feature of the rice ALS gene promoter with the gusA reporter gene and revealed that GUS expression was observed constitutively in aerial parts of rice seedlings and root tips. The marker system consisted exclusively of host plant DNA and enabled efficient selection in a monocot crop plant, rice. The selection system can potentially be applied to generate transgenic plants of other crop species and can be expected to be publicly acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

4-MUG:

4-methylumbelliferyl β-d-glucuronide

CaMV35S:

Cauliflower Mosaic Virus 35S

GUS:

β-glucuronidase

X-gluc:

5-bromo-4-chloro-3-indolyl-β-d-glucuronide

References

  1. D. Chipman Z. Barak J.V. Schloss (1998) ArticleTitleBiosynthesis of 2-aceto-2-hydoroxy acids: acetolactate synthase and acetohydroxy acid synthase Biochem. Biophys. Acta 1385 401–419 Occurrence Handle9655946 Occurrence Handle1:CAS:528:DyaK1cXkt1yhsLk%3D

    PubMed  CAS  Google Scholar 

  2. B.C. Gerwick L.C. Mireles R.J. Eilers (1993) ArticleTitleRapid diagnosis of ALS/AHAS-resistance weeds Weed Technol. 7 519–524 Occurrence Handle1:CAS:528:DyaK2cXitFSltbc%3D

    CAS  Google Scholar 

  3. A.P. Gleave D.S. Mitra S.R. Mudge B.A. Morris (1999) ArticleTitleSelectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene Plant Mol. Biol. 40 223–235 Occurrence Handle10.1023/A:1006184221051 Occurrence Handle10412902 Occurrence Handle1:CAS:528:DyaK1MXkvVygsLw%3D

    Article  PubMed  CAS  Google Scholar 

  4. P. Hajdukiewicz Z. Svab P. Maliga (1994) ArticleTitleThe small, versatile pPZP family of Agrobacterium binary vectors for plant transformation Plant Mol. Biol. 25 989–994 Occurrence Handle10.1007/BF00014672 Occurrence Handle7919218 Occurrence Handle1:CAS:528:DyaK2MXhsVWksLk%3D

    Article  PubMed  CAS  Google Scholar 

  5. P.D. Hare N.-H. Chua (2002) ArticleTitleExcision of selectable marker genes from transgenic plants Nat. Biotechnol. 20 575–580 Occurrence Handle10.1038/nbt0602-575 Occurrence Handle12042860 Occurrence Handle1:CAS:528:DC%2BD38XktFOiurc%3D

    Article  PubMed  CAS  Google Scholar 

  6. M.A. Honma B.J. Baker C.S. Waddell (1993) ArticleTitleHigh- frequency germinal transposition of DsALS in Arabidopsis Proc. Natl. Acad. Sci. USA 92 6242–6246

    Google Scholar 

  7. R.A. Jefferson T.A. Kavanagh M.W. Bevan (1987) ArticleTitleGUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants EMBO J. 6 3901–3907 Occurrence Handle3327686 Occurrence Handle1:CAS:528:DyaL1cXovV2itQ%3D%3D

    PubMed  CAS  Google Scholar 

  8. K.Y. Lee J. Townsend J. Tepperman M. Black C.-F. Chui B. Mazur P. Dunsmuir J. Bedbrook (1988) ArticleTitleThe molecular basis of sulfonylurea herbicide resistance in tobacco EMBO J. 7 1241–1248 Occurrence Handle1:CAS:528:DyaL1cXmt1elsbw%3D

    CAS  Google Scholar 

  9. S.S. Pang L.W. Guddat R.G. Duggleby (2003) ArticleTitleMolecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase J. Biol. Chem. 278 7639–7644 Occurrence Handle12496246 Occurrence Handle1:CAS:528:DC%2BD3sXhsVKiuro%3D

    PubMed  CAS  Google Scholar 

  10. S.S. Pang L.W. Guddat R.G. Duggleby (2004) ArticleTitleCrystallization of Arabidopsis thaliana acetohydroxyacid synthase in complex with the sulfonylurea herbicide chlorimuron ethyl Acta Crystallogr. D60 153–155 Occurrence Handle1:CAS:528:DC%2BD3sXpvVKrsLc%3D

    CAS  Google Scholar 

  11. K. Ray A. Jagannath S.A. Gangwani P.K. Burma D. Pental (2004) ArticleTitleMutant acetolactate synthase gene is an efficient in vitro selectable marker for the genetic transformation of Brassica juncea (oilseed mustard) J. Plant Physiol. 161 1079–1083 Occurrence Handle10.1016/j.jplph.2004.02.001 Occurrence Handle15499910 Occurrence Handle1:CAS:528:DC%2BD2cXptlOgt7s%3D

    Article  PubMed  CAS  Google Scholar 

  12. K. Sathasivan G.W. Haughn N. Murai (1990) ArticleTitleNucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Columbia Nucleic Acids Res. 18 2188 Occurrence Handle2336405 Occurrence Handle1:CAS:528:DyaK3cXkslahtbw%3D

    PubMed  CAS  Google Scholar 

  13. T. Shimizu I. Nakayama K. Nagayama T. Miyazawa Y. Nezu (2002) Acetolactate synthase inhibitors P. Böger K. Wakabayashi K. Hirai (Eds) Herbicide Classes in Development: Mode of Action – Targets – Genetic Engineering – Chemistry Springer Berlin Heidelberg New York 1–41

    Google Scholar 

  14. K. Sugita T. Kasahara E. Matsunga H. Ebinuma (2000) ArticleTitleA transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency Plant J. 22 461–469 Occurrence Handle10.1046/j.1365-313X.2000.00745.x Occurrence Handle10849362 Occurrence Handle1:CAS:528:DC%2BD3cXkvVahsbs%3D

    Article  PubMed  CAS  Google Scholar 

  15. S. Tan R.R. Evans M.L. Dahmer B.K. Singh D.L. Shaner (2005) ArticleTitleImidazolinone-tolerant crops: history, current status and future Pest. Manage. Sci. 61 246–257 Occurrence Handle10.1002/ps.993 Occurrence Handle1:CAS:528:DC%2BD2MXitFOgurg%3D

    Article  CAS  Google Scholar 

  16. S. Toki (1997) ArticleTitleRapid and efficient Agrobacterium-mediated transformation in rice Plant Mol. Biol. Rep. 15 16–21 Occurrence Handle1:CAS:528:DyaK2sXivVejsbg%3D

    CAS  Google Scholar 

  17. J. Zuo Q.W. Niu S.G. Møller N.H. Chu (2001) ArticleTitleChemical-regulatedsite-specific DNA excision in transgenic plants Nat. Biotechnol. 19 157–161 Occurrence Handle10.1038/84428 Occurrence Handle11175731 Occurrence Handle1:CAS:528:DC%2BD3MXhtVaitLg%3D

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiichi Toki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osakabe, K., Endo, M., Kawai, K. et al. The Mutant Form of Acetolactate Synthase Genomic DNA from Rice is an Efficient Selectable Marker for Genetic Transformation. Mol Breeding 16, 313–320 (2005). https://doi.org/10.1007/s11032-005-0999-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-005-0999-y

Keywords

Navigation