Skip to main content

Advertisement

Log in

Quinolone scaffolds as potential drug candidates against infectious microbes: a review

  • Comprehensive Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Prevalence of microbial infections and new rising pathogens are signified as causative agent for variety of serious and lethal health crisis in past years. Despite medical advances, bacterial and fungal infections continue to be a rising problem in the health care system. As more bacteria develop resistance to antibiotics used in therapy, and as more invasive microbial species develop resistance to conventional antimicrobial drugs. Relevant published publications from the last two decades, up to 2024, were systematically retrieved from the MEDLINE/PubMed, SCOPUS, EMBASE, and WOS databases using keywords such as quinolones, anti-infective, antibacterial, antimicrobial resistance and patents on quinolone derivatives. With an approach of considerable interest towards novel heterocyclic derivatives as novel anti-infective agents, researchers have explored these as essential tools in vistas of drug design and development. Among heterocycles, quinolones have been regarded extremely essential for the development of novel derivatives, even able to tackle the associated resistance issues. The quinolone scaffold with its bicyclic structure and specific functional groups such as the carbonyl and acidic groups, is indeed considered a valuable functionalities for further lead generation and optimization in drug discovery. Besides, the substitution at N-1, C-3 and C-7 positions also subjected to be having a significant role in anti-infective potential. In this article, we intend to highlight recent quinolone derivatives based on the SAR approach and anti-infective potential such as antibacterial, antifungal, antimalarial, antitubercular, antitrypanosomal and antiviral activities. Moreover, some recent patents granted on quinolone-containing derivatives as anti-infective agents have also been highlighted in tabular form. Due consideration of this, future research in this scaffold is expected to be useful for aspiring scientists to get pharmacologically significant leads.

Graphical abstract

Several Quinolone derivatives based on the SAR approach as potent antimicrobial agents which combat antimicrobial resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Senerovic L, Opsenica D, Moric I, Aleksic I, Spasic M, Vasiljevic B (2019) Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic Agents. In: Donelli G (ed) Advances in microbiology infectious diseases and public health, vol 14. Springer International Publishing, Cham, pp 37–69. https://doi.org/10.1007/5584_2019_428

    Chapter  Google Scholar 

  2. Zang W, Li D, Gao L, Gao S, Hao P, Bian B (2022) The antibacterial potential of ciprofloxacin hybrids against Staphylococcus aureus. Curr Top Med Chem 22:1020–1034. https://doi.org/10.2174/1568026622666220317162132

    Article  CAS  PubMed  Google Scholar 

  3. Kaye KS, Pogue JM (2015) Infections caused by resistant gram-negative bacteria: epidemiology and management. Pharmacotherapy 35:949–962. https://doi.org/10.1002/phar.1636

    Article  CAS  PubMed  Google Scholar 

  4. Cascioferro S, Parrino B, Carbone D, Pecoraro C, Diana P (2021) Novel strategies in the war against antibiotic resistance. Future Med Chem 13:529–531. https://doi.org/10.4155/fmc-2021-0009

    Article  CAS  PubMed  Google Scholar 

  5. Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N (2017) A review on antibiotic resistance: alarm bells are ringing. Cureus 9:e1403. https://doi.org/10.7759/cureus.1403

    Article  PubMed  PubMed Central  Google Scholar 

  6. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-march-2022.

  7. Frieri M, Kumar K, Boutin A (2017) Antibiotic resistance. J Infect Public Health 10:369–378. https://doi.org/10.1016/j.jiph.2016.08.007

    Article  PubMed  Google Scholar 

  8. Aminov RI (2010) A brief history of the antibiotic era: lessons learned and challenges for the future. Front microbiol 1:134. https://doi.org/10.3389/fmicb.2010.00134

    Article  PubMed  PubMed Central  Google Scholar 

  9. Saini M, Das R, Mehta DK, Chauhan S (2022) Styrylquinolines derivatives: SAR study and synthetic approaches. Med Chem 18:859–870. https://doi.org/10.2174/1573406418666220214085856

    Article  CAS  PubMed  Google Scholar 

  10. Sharma V, Das R, Mehta DK (2022) Exploring quinolone scaffold: unravelling the chemistry of anticancer drug design. Mini-Rev Med Chem 22:69–88. https://doi.org/10.2174/1389557521666210112142136

    Article  CAS  PubMed  Google Scholar 

  11. Das R, Mehta DK, Dhanawat M (2021) An elite scaffold and a wonder pharmacophore in drug discovery: styrylquinoline. Mini-Rev Med Chem 21:1849–1864. https://doi.org/10.2174/1389557521666210225115055

    Article  CAS  PubMed  Google Scholar 

  12. Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R (2018) Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci 115:E3463–E3470. https://doi.org/10.1073/pnas.1717295115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharma V, Das R, Mehta DK, Gupta S, Venugopala KN, Mailavaram R, Deb PK (2022) Recent insight into the biological activities and SAR of quinolone derivatives as multifunctional scaffold. Bioorg Med Chem 59:116674. https://doi.org/10.1016/j.bmc.2022.116674

    Article  CAS  PubMed  Google Scholar 

  14. Damanhouri ZA, Alkreathy HM, Ali AS, Karim S (2021) The potential role of Fluoroquinolones in the management of Covid-19 a rapid review. J Adv Pharm Educ Res 11:128–134. https://doi.org/10.51847/FE1iOIPTwD

    Article  CAS  Google Scholar 

  15. Khatria S, Kumara M, Pratibha RK (2021) A review of antifungal activities of various flouroquinolone and its metal complexes. Ann RSCB 25:396–405

    Google Scholar 

  16. Joshi S, Yadav D, Yadav R (2021) Fluoroquinolones: a review on anti-tubercular activity. Monatshefte fur Chemie-Chem Monthly 152:881–894. https://doi.org/10.1007/s00706-021-02806-7

    Article  CAS  Google Scholar 

  17. Dube PS, Legoabe LJ, Jordaan A, Jesumoroti OJ, Tshiwawa T, Warner DF, Beteck RM (2021) Easily accessed nitroquinolones exhibiting potent and selective anti-tubercular activity. Eur J Med Chem 213:113207. https://doi.org/10.1016/j.ejmech.2021.113207

    Article  CAS  PubMed  Google Scholar 

  18. Balogun TA, Omoboyowa DA, Saibu OA (2020) In silico anti-malaria activity of quinolone compounds against Plasmodium falciparum dihydrofolate reductase (pfDHFR). Int J Biochem Res Rev 29:10–17. https://doi.org/10.9734/ijbcrr/2020/v29i830208

    Article  CAS  Google Scholar 

  19. Asakawa AH, Manetsch R (2021) A comprehensive review of 4 (1H)-quinolones and 4 (1H)-pyridones for the development of an effective antimalarial, plasmodium species and drug resistance. Intechopen, London. https://doi.org/10.5772/intechopen.97084

    Book  Google Scholar 

  20. Sharma V, Das R, Mehta DK, Sharma D, Sahu RK (2022) Exploring quinolone scaffold: unravelling the chemistry of anticancer drug design. Mini-Rev Med Chem 22:69–88. https://doi.org/10.2174/1389557521666210112142136

    Article  CAS  PubMed  Google Scholar 

  21. Tabara K, Tamura R, Nakamura A, Mori S, Kitano T, Fujikawa K, Okamoto K, Kanayama S, Uratsuji H, Ikeda F, Matsumoto T (2020) Anti-inflammatory effects of ozenoxacin, a topical quinolone antimicrobial agent. J Antibiot 73:247–254. https://doi.org/10.1038/s41429-020-0278-5

    Article  CAS  Google Scholar 

  22. Pou S, Dodean RA, Frueh L, Liebman KM, Gallagher RT, Jin H, Winter RW (2021) New scalable synthetic routes to ELQ-300, ELQ-316, and other antiparasitic quinolones. Org Process Res Dev 25:1841–1852. https://doi.org/10.1021/acs.oprd.1c00099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Solano-Galvez SG, Valencia-Segrove MF, Prado MJO, Boucieguez ABL, Alvarez-Hernandez DA, Vazquez-Lopez R (2020) Mechanisms of resistance to quinolones. In: Mareș M, Lim SHE, Lai K, Cristina R (eds) Antimicrobial resistance - A one health perspective. IntechOpen, London. https://doi.org/10.5772/intechopen.92577

    Chapter  Google Scholar 

  24. Aly AA, Ramadan M, Abuo-Rahma GEDA, Elshaier YAMM, Elbastawesy MA, Brown AB, Brase S (2020) Quinolones as prospective drugs: their syntheses and biological applications. Adv Heterocycl Chem 135:147–196. https://doi.org/10.1016/bs.aihch.2020.08.001

    Article  CAS  Google Scholar 

  25. Pham TDM, Ziora Z, Blaskovich M (2019) Quinolone Antibiotics. Med Chem Comm 10:1719–1739. https://doi.org/10.1039/c9md00120d

    Article  CAS  Google Scholar 

  26. Hawkey PM (2003) Mechanisms of quinolone action and microbial response. J Antimicrob Chemother 51:29–35. https://doi.org/10.1093/jac/dkg207

    Article  CAS  PubMed  Google Scholar 

  27. Chan PF, Huang J, Bax BD, Gwynn MN (2013) Recent developments in inhibitors of bacterial type IIA topoisomerases. Antibiotics: targets, mechanisms and resistance. Wiley, Hoboken, pp 263–297

    Google Scholar 

  28. Aldred KJ, Kerns RJ, Osheroff N (2014) Mechanism of quinolone action and resistance. Biochem 53:1565–1574. https://doi.org/10.1021/bi5000564

    Article  CAS  Google Scholar 

  29. Nilius AM, Shen LL, Hensey-Rudloff D, Almer LS, Beyer JM, Balli DJ, Cai Y, Flamm RK (2003) In vitro antibacterial potency and spectrum of abt-492, a new fluoroquinolone. Antimicrob Agents Chemother 47:3260–3269. https://doi.org/10.1128/aac.47.10.3260-3269.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Markham A (2017) Delafloxacin: first global approval. Drugs 77:1481–1486. https://doi.org/10.1007/s40265-017-0790-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drlica K, Hiasa H, Kerns R, Malik M, Mustaev A, Zhao X (2009) Quinolones: action and resistance updated. Curr Top Med Chem 9:981–998. https://doi.org/10.2174/156802609789630947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hong Y, Zeng J, Wang X, Drlica K, Zhao X (2019) Post-stress bacterial cell death mediated by reactive oxygen species. Proc Natl Acad Sci 116:10064–10071. https://doi.org/10.1073/pnas.1901730116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Annunziato, (2019) Strategies to overcome antimicrobial resistance (amr) making use of non-essential target inhibitors: a review. Int J Mol Sci 20:5844. https://doi.org/10.3390/ijms20235844

    Article  CAS  PubMed  Google Scholar 

  34. Arya SC, Agarwal N (2011) International travel with acquisition of multi-drug resistant gram negative bacteria containing the New Delhi metallo-beta-lactamase gene, bla (NDM-1). Travel Med Infect Dis 9:47–48. https://doi.org/10.1016/j.tmaid.2010.12.002

    Article  PubMed  Google Scholar 

  35. Walsh TR, Weeks J, Livermore DM, Toleman MA (2011) Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis 11:355–362. https://doi.org/10.1016/S1473-3099(11)70059-7

    Article  PubMed  Google Scholar 

  36. Ali J, Rafiq QA, Ratcliffe E (2018) Antimicrobial resistance mechanisms and potential synthetic treatments. Fut Sci OA 4:FSO290. https://doi.org/10.4155/fsoa-2017-0109

    Article  CAS  Google Scholar 

  37. Wilke MH (2010) Multiresistant bacteria and current therapy—the economical side of the story. Eur J Med Res 15:571–576. https://doi.org/10.1186/2047-783X-15-12-571

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nirwan S, Chahal V, Kakkar R (2019) Thiazolidinones: synthesis, reactivity, and their biological applications. J Heterocycl Chem 56:1239–1253. https://doi.org/10.1002/jhet.3514

    Article  CAS  Google Scholar 

  39. Jacoby GA (2005) Mechanisms of resistance to quinolones. Clin Infect Dis 41:S120-126. https://doi.org/10.1086/428052

    Article  CAS  PubMed  Google Scholar 

  40. Lungu IA, Moldovan OL, Biriș V, Rusu A (2022) Fluoroquinolones hybrid molecules as promising antibacterial agents in the fight against antibacterial resistance. Pharmaceutics 14:1749. https://doi.org/10.3390/pharmaceutics14081749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fair RJ, Tor Y (2014) Antibiotics and bacterial resistance in the 21st century. Perspectives in med chem 6:PMC-S14459. https://doi.org/10.4137/PMC.S14459.

  42. Vargiu AV, Pos KM, Poole K, Nikaido H (2016) Bad bugs in the XXIst century: resistance mediated by multi-drug efflux pumps in Gram-negative bacteria. Front microbiol 7:833. https://doi.org/10.3389/fmicb.2016.00833

    Article  PubMed  PubMed Central  Google Scholar 

  43. Admassie M (2018) Current review on molecular and phenotypic mechanism of bacterial resistance to antibiotic Sci J Clin Med 7:13. https://doi.org/10.11648/j.sjcm.20180702.11.

  44. Penesyan A, Gillings M, Paulsen IT (2015) Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules 20:5286–5298. https://doi.org/10.3390/molecules20045286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang L, Mah T (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190:4447–4452. https://doi.org/10.1128/jb.01655-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Beloin C, Renard S, Ghigo JM, Lebeaux D (2014) Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol 18:61–68. https://doi.org/10.1016/j.coph.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  47. Sass P, Brötz-Oesterhelt H (2013) Bacterial cell division as a target for new antibiotics. Curr Opin Microbiol 16:522–530. https://doi.org/10.1016/j.mib.2013.07.006

    Article  CAS  PubMed  Google Scholar 

  48. Urfer M, Bogdanovic J, Lo Monte F, Moehle K, Zerbe K, Omasits U, Ahrens CH, Pessi G, Eberl L (2016) A peptidomimetic antibiotic targets outer membrane proteins and disrupts selectively the outer membrane in Escherichia coli. J Biol Chem 291:1921–1932. https://doi.org/10.1074/jbc.M115.691725

    Article  CAS  PubMed  Google Scholar 

  49. Thekkae Padil VV, Cerník M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8:889–898. https://doi.org/10.2147/IJN.S40599

    Article  CAS  PubMed  Google Scholar 

  50. Hartzell JD, Neff R, Ake J, Howard R, Olson S, Paolino K, Vishnepolsky M, Weintrob A, Wortmann G (2009) nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin Infect Dis 48:1724–1728. https://doi.org/10.1086/599225

    Article  CAS  PubMed  Google Scholar 

  51. Lebeaux D, Chauhan A, Rendueles O, Beloin C (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens 2:288–356. https://doi.org/10.3390/pathogens2020288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng G, Dai M, Ahmed S, Hao H, Wang X, Yuan Z (2016) Antimicrobial drugs in fighting against antimicrobial resistance. Front microbiol 7:181062. https://doi.org/10.3389/fmicb.2016.00470

    Article  Google Scholar 

  53. Abebe B, Zereffa EA, Tadesse A, Murthy HA (2020) A review on enhancing the antibacterial activity of ZnO: Mechanisms and microscopic investigation. Nanoscale Res Lett 15:1–19. https://doi.org/10.1186/s11671-020-03418-6

    Article  CAS  Google Scholar 

  54. Okeke IN, Laxminarayan R, Bhutta ZA, Duse AG, Jenkins P, O’Brien TF, Pablos-Mendez A, Klugman KP (2005) Antimicrobial resistance in developing countries. Part I: recent trends and current status. Lancet Infectious Dis. https://doi.org/10.1016/S1473-3099(05)70189-4

    Article  Google Scholar 

  55. Hu YQ, Zhang S, Xu Z, Lv ZS, Liu ML, Feng LS (2017) 4-Quinolone hybrids and their antibacterial activities. Eur J Med Chem 141:335–345. https://doi.org/10.1016/j.ejmech.2017.09.050

    Article  CAS  PubMed  Google Scholar 

  56. Hooper DC, Jacoby GA (2015) Mechanisms of drug resistance: quinolone resistance. Ann N Y Acad Sci 1354:12–31. https://doi.org/10.1111/nyas.12830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bush NG, Diez-Santos I, Abbott LR, Maxwell A (2020) Quinolones: mechanism, lethality and their contributions to antibiotic resistance. Molecules 25:5662. https://doi.org/10.3390/molecules25235662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sharma PC, Jain A, Jain S (2009) Fluoroquinolone antibacterials: a review on chemistry, microbiology and therapeutic prospects. Acta Pol Pharm 66:587–604

    CAS  PubMed  Google Scholar 

  59. Fabrega A, Madurga S, Giralt E, Vila J (2009) Mechanism of action of and resistance to quinolones. Microb Biotechnol 2:40–61. https://doi.org/10.1111/j.1751-7915.2008.00063.x

    Article  CAS  PubMed  Google Scholar 

  60. Hiasa H (2018) DNA topoisomerases as targets for antibacterial agents. In: Drolet M (ed) DNA Topoisomerases: methods and protocols; methods in molecular biology. Humana Press, New York, pp 47–62

    Chapter  Google Scholar 

  61. Uivarosi V (2013) Metal complexes of quinolone antibiotics and their applications: an update. Mol Basel Switz 18:11153–11197. https://doi.org/10.3390/molecules180911153

    Article  CAS  Google Scholar 

  62. Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, Hiasa H, Marks KR, Kerns RJ, Berger JM, Drlica K (2014) Fluoroquinolone-gyrase-DNA complexes. J Biol Chem 289:12300–12312. https://doi.org/10.1074/jbc.M113.529164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Castro RAD, Ross A, Kamwela L, Reinhard M, Loiseau C, Feldmann J, Borrell S, Trauner A, Gagneux S (2020) The genetic background modulates the evolution of fluoroquinolone-resistance in Mycobacterium tuberculosis. Mol Biol Evol 37:195–207. https://doi.org/10.1093/molbev/msz214

    Article  CAS  PubMed  Google Scholar 

  64. Rodriguez-Guzman R, Fulks LCJ, Radwan MM, Burandt CL, Ross SA (2011) Chemical constituents, antimicrobial and antimalarial activities of Zanthoxylum monophyllum. Planta Med 77:1542–1544. https://doi.org/10.1055/s-0030-1270782

    Article  CAS  PubMed  Google Scholar 

  65. Cui SF, Addla D, Zhou CH (2016) Novel 3-aminothiazolquinolones: design, synthesis, bioactive evaluation, SARs, and preliminary antibacterial mechanism. J Med Chem 59:4488–4510. https://doi.org/10.1021/acs.jmedchem.5b01678

    Article  CAS  PubMed  Google Scholar 

  66. Faidallah HM, Girgis AS, Tiwari AD, Honkanadavar HH, Thomas SJ, Samir A et al (2018) Synthesis, antibacterial properties and 2D-QSAR studies of quinolone-triazole conjugates. Eur J Med Chem 143:1524–1534. https://doi.org/10.1016/j.ejmech.2017.10.042

    Article  CAS  PubMed  Google Scholar 

  67. Kant R, Singh V, Nath G, Awasthi SK, Agarwal A (2016) Design, synthesis and biological evaluation of ciprofloxacin tethered bis-1, 2, 3-triazole conjugates as potent antibacterial agents. Eur J Med Chem 124:218–228. https://doi.org/10.1016/j.ejmech.2016.08.031

    Article  CAS  PubMed  Google Scholar 

  68. Asadipour A, Moshafi MH, Khosravani L, Moghimi S, Amou E, Firoozpour L, Ilbeigi G, Beiki K, Soleimani E, Foroumadi A (2018) N-substituted piperazinyl sarafloxacin derivatives: synthesis and in vitro antibacterial evaluation. DARU J Pharm Sci 26:199–207. https://doi.org/10.1007/s40199-018-0226-0

    Article  CAS  Google Scholar 

  69. Mohammed AA, Suaifan GA, Shehadeh MB, Okechukwu PN (2020) Design, synthesis and antimicrobial evaluation of novel glycosylated-fluoroquinolones derivatives. Eur J Med Chem 202:112513. https://doi.org/10.1016/j.ejmech.2020.112513

    Article  CAS  PubMed  Google Scholar 

  70. Soda AK, Kurva S, Singh K, Veeragoni D, Misra S, Murahari M, Madabhushi S (2022) Synthesis and pharmacological evaluation of hexafluoro functionalized quinolone derivatives as potential chemotherapeutic agents. ChemistrySelect 7:e202201366. https://doi.org/10.1002/slct.202201366

    Article  CAS  Google Scholar 

  71. Mahajan A, Singh H, Singh A, Agrawal DK, Arora A, Chundawat TS (2022) Trifluoromethylated quinolone-hydantoin hybrids: synthesis and antibacterial evaluation. Sci 4:30. https://doi.org/10.3390/sci4030030

    Article  CAS  Google Scholar 

  72. Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: a primer for the natural products research community. J Nat Prod 80:756–770. https://doi.org/10.1021/acs.jnatprod.6b01085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang B (2019) Quinolone derivatives and their antifungal activities: an overview. Arch Pharm 352:1800382. https://doi.org/10.1002/ardp.201800382

    Article  CAS  Google Scholar 

  74. Zhang Q, Liu F, Zeng M, Mao Y, Song Z (2021) Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 105:5259–5279. https://doi.org/10.1007/s00253-021-11407-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Senerovic L, Opsenica D, Moric I, Aleksic I, Spasic M, Vasiljevic B (2020) Quinolines and quinolones as antibacterial, antifungal, anti-virulence, antiviral and anti-parasitic agents. Infectious diseases and public health. Springer, Cham, pp 37–69

    Google Scholar 

  76. Al-Hiari Y, Abu-Dahab R, El-Abadelah M (2008) Heterocycles [h]-Fused Onto 4-Oxoquinoline-3-Carboxylic Acid, Part VIII [1]. Convenient Synthesis and Antimicrobial Properties of Substituted Hexahydro[1,4]diazepino[2,3-h]quinoline-9-carboxylic acid and Its Tetrahydroquino[7,8-b]benzodiazepine Analog. Molecules 13:2880–2893. https://doi.org/10.3390/molecules13112880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moussaoui O, Byadi S, Eddine Hachim M, Sghyar R, Bahsis L, Moslova K, Aboulmouhajir A, Rodi YK, Podlipnik C, Hadrami EL, E, Chakroune S, (2021) Selective synthesis of novel quinolones-amino esters as potential antibacterial and antifungal agents: experimental, mechanistic study, docking and molecular dynamic simulations. J Mol Struct 1241:130652. https://doi.org/10.1016/j.molstruc.2021.130652

    Article  CAS  Google Scholar 

  78. Sadeek SA, El-Shwiniy WH (2010) Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: synthesis, structure and biological evaluation. J Mol Struct 977:243–253. https://doi.org/10.1016/j.molstruc.2010.05.041

    Article  CAS  Google Scholar 

  79. Soliman DH, Abdelrahman MA, Gomaa MS, Elasser MM, AbdelAziz MM, Salama I (2017) Design, synthesis and 2D QSAR study of novel pyridine and quinolone hydrazone derivatives as potential antimicrobial and antitubercular agents. Eur J Med Chem 138:698–714. https://doi.org/10.1016/j.ejmech.2017.07.004

    Article  CAS  PubMed  Google Scholar 

  80. Patel NB, Pathak KK (2012) Pyridoquinolones containing azetidinones: synthesis and their biological evaluation. Med Chem Res 21:2044–2055. https://doi.org/10.1007/s00044-011-9728-8

    Article  CAS  Google Scholar 

  81. Cui SF, Ren Y, Zhang SL, Peng XM, Damu GL, Geng RX, Zhou CH (2013) Synthesis and biological evaluation of a class of quinolone triazoles as potential antimicrobial agents and their interactions with calf thymus DNA. Bioorg Med Chem Lett 23:3267–3272. https://doi.org/10.1016/j.bmcl.2013.03.118

    Article  CAS  PubMed  Google Scholar 

  82. Luthra P, Liang J, Pietzsch CA, Khadka S, Edwards MR, Wei S, De S, Posner B, Bukreyev A, Ready JM, Basler CF (2018) A high throughput screen identifies benzoquinoline compounds as inhibitors of Ebola virus replication. Antivi res 150:193–201. https://doi.org/10.1016/j.antiviral.2017.12.019

    Article  CAS  Google Scholar 

  83. Plantone D, Koudriavtseva T (2018) Current and future use of chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig 38:653–671. https://doi.org/10.1007/s40261-018-0656-y

    Article  CAS  PubMed  Google Scholar 

  84. World Health Organization (2022) Summary of the global HIV epidemic https://www.who.int/health-topics/hiv-aids#tab=tab_1.

  85. Wang R, Xu K, Shi W (2019) Quinolone derivatives: potential anti-HIV agent—development and application. Arch Pharm 352:1900045. https://doi.org/10.1002/ardp.201900045

    Article  CAS  Google Scholar 

  86. He QQ, Zhang X, Yang LM, Zheng YT, Chen F (2013) Synthesis and biological evaluation of 5-fluoroquinolone-3-carboxylic acids as potential HIV-1 integrase inhibitors. J Enzyme Inhib Med Chem 28:671–676. https://doi.org/10.3109/14756366.2012.668540

    Article  CAS  PubMed  Google Scholar 

  87. Mercorelli B, Luganini A, Muratore G, Massari S, Terlizzi ME, Tabarrini O, Gribaudo G, Loregian PG, A (2014) The 6-Aminoquinolone WC5 inhibits different functions of the immediate-early 2 (IE2) protein of human cytomegalovirus that are essential for viral replication. Antimicrob Agents Chemother 58:6615–6626. https://doi.org/10.3109/14756366.2012.668540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Parizadeh N, Alipour E, Soleymani S, Zabihollahi R, Aghasadeghi MR, Hajimahdi Z, Zarghi A (2017) Synthesis of novel 3-(5-(Alkyl/arylthio)-1,3,4-oxadiazol-2-yl)-8-phenylquinolin-4 (1 H)-one derivatives as anti-HIV agents. Phosphorus Sulfur Relat Elem 193:225–231. https://doi.org/10.1080/10426507.2017.1394302

    Article  CAS  Google Scholar 

  89. Sancineto L, Iraci N, Barreca ML, Massari S, Manfroni G, Corazza G, Cecchetti V, Marcello A, Daelemans D, Pannecouque C, Tabarrini O (2014) Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Bioorg Med Chem 22:4658–4666. https://doi.org/10.1016/j.bmc.2014.07.018

    Article  CAS  PubMed  Google Scholar 

  90. Jassem AM, Dhumad AM, Almashal FA, Alshawi JM (2020) Microwave-assisted synthesis, molecular docking and anti-HIV activities of some drug-like quinolone derivatives. Med Chem Res 29:1067–1076. https://doi.org/10.1007/s00044-020-02546-z

    Article  CAS  Google Scholar 

  91. Xu XM, Luo ZG, He K, Zhang MY (2013) Synthesis and biological evaluation of quinolone acid derivatives having polyhydroxylated aromatics as HIV-1 integrase inhibitions. AMR 634–638:1116–1119. https://doi.org/10.4028/www.scientific.net/amr.634-638.1116

    Article  Google Scholar 

  92. WHO Guidelines for malaria, (2023).

  93. Winter RW, Kelly JX, Smilkstein MJ, Dodean R, Hinrichs D, Riscoe MK (2008) Antimalarial quinolones: synthesis, potency, and mechanistic studies. Exp Parasitol 118:487–497. https://doi.org/10.1016/j.exppara.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  94. Fan YL, Cheng XW, Wu JB, Liu M, Zhang FZ, Xu Z, Feng LS (2018) Antiplasmodial and antimalarial activities of quinolone derivatives: an overview. Eur J Med Chem 146:1–14. https://doi.org/10.1016/j.ejmech.2018.01.039

    Article  CAS  PubMed  Google Scholar 

  95. Dixit SK, Mishra N, Sharma M, Singh S, Agarwal A, Awasthi SK, Bhasin VK (2012) Synthesis and in vitro antiplasmodial activities of fluoroquinolone analogs. Eur J Med Chem 51:52–59. https://doi.org/10.1016/j.ejmech.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  96. Zhang Y, Guiguemde WA, Sigal M, Zhu F, Connelly MC, Nwaka S, Guy RK (2010) Synthesis and structure–activity relationships of antimalarial 4-oxo-3-carboxyl quinolones. Bioorg Med Chem 18:2756–2766. https://doi.org/10.1016/j.bmc.2010.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nilsen A, Miley GP, Forquer IP, Mather MW, Katneni K, Li Y, Pou S et al (2014) Discovery, synthesis, and optimization of antimalarial 4 (1 H)-quinolone-3-diarylethers. J Med Chem 57:3818–3834. https://doi.org/10.1021/jm500147k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wube A, Hüfner A, Seebacher W, Kaiser M, Brun R, Bauer R, Bucar F (2014) 1,2-Substituted 4-(1H)-quinolones: synthesis, antimalarial and antitrypanosomal activities in Vitro. Molecules 19:14204–14220. https://doi.org/10.3390/molecules190914204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. de Souza JO, Almeida SM, Souza GE, Zanini CL, da Silva EM, Calit J et al (2021) Parasitological profiling shows 4 (1H)-quinolone derivatives as new lead candidates for malaria. Euro J Med Chem Reports 3:100012. https://doi.org/10.1016/j.ejmcr.2021.100012

    Article  CAS  Google Scholar 

  100. Maignan JR, Lichorowic CL, Giarrusso J, Blake LD, Casandra D, Mutka TS (2016) ICI 56,780 Optimization: structure–activity relationship studies of 7-(2-Phenoxyethoxy)-4 (1 H)-quinolones with antimalarial activity. J Med Chem 59:6943–6960. https://doi.org/10.1021/acs.jmedchem.6b00759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. WHO Global tuberculosis report (2022). https://www.who.int/teams/global-tuberculosis-programme/tb-reports.

  102. Mohajan H (2014) Tuberculosis is a fatal disease among some developing countries of the world. Tuberculosis is a Fatal Disease among Some Developing Countries of the World 3:18–21. https://mpra.ub.uni-muenchen.de/82851/.

  103. Carta A, Bua A, Corona P, Piras S, Briguglio I, Molicotti P, Zanetti S, Laurini E, Aulic S, Fermeglia M, Pricl S (2019) Design, synthesis and antitubercular activity of 4-alkoxy-triazoloquinolones able to inhibit the M. tuberculosis DNA gyrase. Eur J Med Chem 161:399–415. https://doi.org/10.1016/j.ejmech.2018.10.031

    Article  CAS  PubMed  Google Scholar 

  104. Naeem A, Badshah SL, Muska M, Ahmad N, Khan K (2016) The current case of quinolones: synthetic approaches and antibacterial activity. Molecules 21:268. https://doi.org/10.3390/molecules21040268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. De Souza MV, Vasconcelos TR, Almeida MVD, Cardoso SH (2006) Fluoroquinolones: an important class of antibiotics against tuberculosis. Curr Med Chem 13:455–463. https://doi.org/10.2174/092986706775527965

    Article  PubMed  Google Scholar 

  106. Bouige A, Darmon A, Piton J, Roue M, Petrella S, Capton E, Forterre P, Aubry A, Mayer C (2013) Mycobacterium tuberculosis DNA gyrase possesses two functional GyrA-boxes. Biochem J 455:285–294. https://doi.org/10.1042/BJ20130430

    Article  CAS  PubMed  Google Scholar 

  107. Hooper DC, Jacoby GA (2016) Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med 6:a025320. https://doi.org/10.1101/cshperspect.a025320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Badshah SL, Ullah A (2018) New developments in non-quinolone-based antibiotics for the inhibiton of bacterial gyrase and topoisomerase IV. Eur J Med Chem 152:393–400. https://doi.org/10.1016/j.ejmech.2018.04.059

    Article  CAS  PubMed  Google Scholar 

  109. Liu KL, Teng F, Xiong L, Li X, Gao C, Yu LT (2021) Discovery of quinolone derivatives as antimycobacterial agents. RSC Adv 11:24095–24115. https://doi.org/10.1039/D0RA09250A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Dube PS, Legoabe LJ, Jordaan A, Sigauke L, Warner DF, Beteck RM (2023) Quinolone analogues of benzothiazinone: synthesis, antitubercular structure-activity relationship and ADME profiling. Eur J Med Chem 258:115539. https://doi.org/10.1016/j.ejmech.2023.115539

    Article  CAS  PubMed  Google Scholar 

  111. Ribeiro CA, dos Reis DB, Reis IF, de Carvalho AN, Lourenço MC, de Souza MV, Pinheiro AC, Saraiva MF (2022) Synthesis and antimycobacterial evaluation of fluoroquinolones derivatives coupled with isoprenyl moiety at the C-7 position. Med Chem Res 31:949–959. https://doi.org/10.1007/s00044-022-02891-1

    Article  CAS  Google Scholar 

  112. Aziz HA, Moustafa GA, Abbas SH, Hauk G, Siva Krishna V, Sriram D, Berger JM, Abuo-Rahma GEDA (2019) New fluoroquinolones/nitric oxide donor hybrids: design, synthesis and antitubercular activity. Med Chem Res 28:1272–1283. https://doi.org/10.1007/s00044-019-02372-y

    Article  CAS  Google Scholar 

  113. Ture A, Kulabas N, Dingis SI, Birgul K, Bozdeveci A, Karaoglu SA, Krishna VS, Sriram D, Kucukguzel I (2019) Design, synthesis and molecular modeling studies on novel moxifloxacin derivatives as potential antibacterial and antituberculosis agents. Bioorg Chem 88:102965. https://doi.org/10.1016/j.bioorg.2019.102965

    Article  CAS  PubMed  Google Scholar 

  114. Xu Z, Zhang S, Feng LS, Li XN, Huang GC, Chai Y, Lv ZS, Guo HY, Liu ML (2017) Synthesis and in vitro antimycobacterial and antibacterial activity of 8-OMe ciprofloxacin-hydrozone/azole hybrids. Molecules 22(7):1171. https://doi.org/10.3390/molecules22071171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Buscher P, Cecchi G, Jamonneau V, Priotto G (2017) Human african trypanosomiasis. The Lancet 390(10110):2397–2409. https://doi.org/10.1016/S0140-6736(17)31510-6

    Article  Google Scholar 

  116. Baker CH, Welburn SC (2018) The long wait for a new drug for human African trypanosomiasis. Trends Parasitol 34:818–827. https://doi.org/10.1016/j.pt.2018.08.006

    Article  PubMed  Google Scholar 

  117. Angula KT, Legoabe LJ, Swart T, Hoppe HC, Beteck RM (2022) Synthesis and in vitro antitrypanosomal evaluation of novel 6-heteroarylidene-substituted quinolone derivatives. Eur J Med Chem 227:113913. https://doi.org/10.1016/j.ejmech.2021.113913

    Article  CAS  PubMed  Google Scholar 

  118. Beteck RM, Isaacs M, Hoppe HC, Khanye SD (2018) Synthesis, in vitro cytotoxicity and trypanocidal evaluation of novel 1, 3, 6-substituted non-fluoroquinolones. S Afr J Chem 71:188–195

    Article  CAS  Google Scholar 

  119. Pomel S, Dubar F, Forge D, Loiseau PM, Biot C (2015) New heterocyclic compounds: synthesis and antitrypanosomal properties. Bioorg Med Chem 23:5168–5174. https://doi.org/10.1016/j.bmc.2015.03.029

    Article  CAS  PubMed  Google Scholar 

  120. Hiltensperger G, Hecht N, Kaiser M, Rybak JC, Hoerst A, Dannenbauer N, Muller-Buschbaum K, Bruhn H, Esch H, Lehmann L, Meinel L, Holzgrabe U (2016) Quinolone amides as antitrypanosomal lead compounds with in vivo activity. Antimicrob Agents Ch 60:4442–4452. https://doi.org/10.1128/aac.01757-15

    Article  CAS  Google Scholar 

  121. Ma X, Zhou W, Brun R (2009) Synthesis, in vitro antitrypanosomal and antibacterial activity of phenoxy, phenylthio or benzyloxy substituted quinolones. Bioorg Med Chem Lett 19:986–989. https://doi.org/10.1016/j.bmcl.2008.11.078

    Article  CAS  PubMed  Google Scholar 

  122. Roy S, Chandrasekaran SK, Imamori K, Asaoka T, Shibata A, Takahashi M, Bowman LM (2004) Patent US6699492B2.

  123. DE Souza NJ, Patel MV, Deshpande PK, Agarwal SK, Sreenivas K, Nair SC, Chugh Y Shukla, MC (2008) Patent US7393957B2.

  124. Ledoussal B, Hu XE, Almstead J, Gray JL (2001) Patent WO2002048138A1.

  125. Ledoussal B, Almstead JK, Gray JL (2011) Patent US7868021B2.

  126. Bradbury BJ, Deshpande M, Pucci MJ, Wang Q, Wiles JA, Song Y, Hashimoto A, Lucien E (2013) Patent EP1664062B1.

  127. Manetsch R, Kyle DE, Neelarapu R, Maignan JR, Lichorowic CL, LaCrue AN (2018) Patent US10000452B1.

  128. Xu B, Zhu Q, Cho H, Fathi R, Yang Z, Sandrasagra A, Liu Y (2006) Patent US20060223783A1.

  129. Daube G, Edingloh M, Limet A, Pirro F, Stephan B (2012). Patent AU2011200356B2.

  130. Grant Iii, RB Macielag, MJ Paget, SD, Weidner-Wells MA, Xu X, Xu X (2015). Patent DK1861401T3.

  131. Kapsner T, Dalhoff A (2013) Patent ES2838724T3.

  132. Oethinger M, Levy B (2011) Patent US8012711B2.

Download references

Funding

This work did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Vishal Sharma: Design, Data Curation, Writing Dinesh Kumar Mehta: Data Curation, supervision Rina Das: Writing, Original Draft Preparation Diksha Sharma: Formal analysis Shahbaz Aman: Formal analysis M. U. Khan: Formal analysis.

Corresponding author

Correspondence to Dinesh Kumar Mehta.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Das, R., Mehta, D.K. et al. Quinolone scaffolds as potential drug candidates against infectious microbes: a review. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10862-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10862-4

Keywords

Navigation