Skip to main content
Log in

Design, synthesis and herbicidal activity of novel cyclohexanedione derivations containing pyrazole and pyridine groups as potential HPPD inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27; HPPD) is one of the important target enzymes in the development of herbicides. To discover novel HPPD inhibitors with unique molecular, 39 cyclohexanedione derivations containing pyrazole and pyridine groups were designed and synthesized. The preliminary herbicidal activity test results showed that some compounds had obvious inhibitory effects on monocotyledon and dicotyledonous weeds. The herbicidal spectrums of the highly active compounds were further determined, and the compound G31 exhibited the best inhibitory rate over 90% against Plantago depressa Willd and Capsella bursa-pastoris at the dosages of 75.0 and 37.5 g ai/ha, which is comparable to the control herbicide mesotrione. Moreover, compound G31 showed excellent crop safety, with less than or equal to 10% injury rates to corn, sorghum, soybean and cotton at a dosage of 225 g ai/ha. Molecular docking and molecular dynamics simulation analysis revealed that the compound G31 could stably bind to Arabidopsis thaliana HPPD (AtHPPD). This study indicated that the compound G31 could be used as a lead molecular structure for the development of novel HPPD inhibitors, which provided an idea for the design of new herbicides with unique molecular scaffold.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wakabayashi K, Boger P (2002) Target sites for herbicides: entering the 21st century. Pest Manag Sci 58(11):1149–1154. https://doi.org/10.1002/ps.560

    Article  CAS  PubMed  Google Scholar 

  2. Wang D-W, Lin H-Y, Cao R-J, Yang S-G, Chen Q, Hao G-F, Yang W-C, Yang G-F (2014) Synthesis and herbicidal evaluation of triketone-containing quinazoline-2,4-diones. J Agric Food Chem 62:11786–11796. https://doi.org/10.1021/jf5048089

    Article  CAS  PubMed  Google Scholar 

  3. Moran GR (2005) 4-Hydroxyphenylpyruvate dioxygenase. Arch Biochem Biophys 433(1):117–128. https://doi.org/10.1016/j.abb.2004.08.015

    Article  CAS  PubMed  Google Scholar 

  4. Sun X-L, Ji Z-M, Wei S-P, Ji Z-Q (2020) Design, synthesis and herbicidal activity of 5-cyclopropyl-N-phenylisoxazole-4-carboxamides. J Mol Struct 1220:128628. https://doi.org/10.1016/j.molstruc.2020.128628

    Article  CAS  Google Scholar 

  5. Fritze IM, Linden L, Freigang J, Auerbach G, Huber R, Steinbacher S (2004) The crystal structures of Zea mays and Arabidopsis 4-hydroxyphenylpyruvate dioxygenase. Plant Physiol 134:1388–1400. https://doi.org/10.1104/pp.103.034082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang M-M, Huang H, Shu L, Liu J-M, Zhang J-Q, Yan Y-L, Zhang D-Y (2020) Synthesis and herbicidal activities of aryloxyacetic acid derivatives as HPPD inhibitors. Beilstein J Org Chem 16:233–247. https://doi.org/10.3762/bjoc.16.25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang H, Zhang J-Q, Liu J-M, Wang M-M, Shu L, Yan Y-L, Zhan X-H, Wang P, Huan X-T, Zhang D-Y (2021) Discovery of novel benzofuran scaffold as 4-hydroxyphenylpyruvate dioxygenase inhibitors. Pest Manag Sci 77:1409–1421. https://doi.org/10.1002/ps.6159

    Article  CAS  PubMed  Google Scholar 

  8. Dong J, Dong J-Q, Yu X-H, Yan Y-C, Nan J-X, He B, Ye B-Q, Yang W-C, Lin H-Y, Yang G-F (2022) Structural insights of 4-hydrophenylpyruvate dioxygenase inhibition by structurally diverse small molecules. Advanced Agrochem 1:174–181. https://doi.org/10.1016/j.aac.2022.10.002

    Article  Google Scholar 

  9. Wang D-W, Lin H-Y, Cao R-J, Ming Z-Z, Chen T, Hao G-F, Yang W-C, Yang G-F (2015) Design, synthesis and herbicidal activity of novel quinazoline-2,4-diones as 4-hydroxyphenylpyruvate dioxygenase inhibitors. Pest Manag Sci 71:1122–1132. https://doi.org/10.1002/ps.3894

    Article  CAS  PubMed  Google Scholar 

  10. Wang X-N, Lin H-Y, Liu J-J, Zhao X-Y, Chen X, Yang W-C, Yang G-F, Zhang C-G (2021) The structure of 4-hydroxylphenylpyruvate dioxygenase complexed with 4-hydroxylphenylpyruvic acid reveals an unexpected inhibition mechanism. Chin Chem Lett 32:1920–1924. https://doi.org/10.1016/j.cclet.2021.02.041

    Article  CAS  Google Scholar 

  11. Wang J-Y, Gao S, Shi J, Cao H-F, Ye T, Yue M-L, Ye F, Fu Y (2022) Virtual screening based on pharmacophore model for developing novel HPPD inhibitors. Pestic Biochem Physiol 184:105109. https://doi.org/10.1016/j.pestbp.2022.105109

    Article  CAS  PubMed  Google Scholar 

  12. Zeng H-N, Zhang W, Wang Z-X, Geng W, Feng G, Gan X-H (2022) Novel pyrazole amides as potential 4-hydroxyphenylpyruvate dioxygenase inhibitors. J Agric Food Chem 70(24):7400–7411. https://doi.org/10.1021/acs.jafc.2c02123

    Article  CAS  PubMed  Google Scholar 

  13. Wang H-Z, Wang L-P, Zhang X-L, Bai S, Jin T, Liu W-T, Wang J-X (2021) Unravelling phytotoxicity and mode of action of Tripyrasulfone, a novel herbicide. J Agric Food Chem 69:7168–7177. https://doi.org/10.1021/acs.jafc.1c01294

    Article  CAS  PubMed  Google Scholar 

  14. Fu Y, Wang M, Zhao L-X, Zhang S-Q, Liu Y-X, Guo Y-Y, Zhang D, Gao S, Ye F (2021) Design, synthesis, herbicidal activity and CoMFA of aryl-formyl piperidinone HPPD inhibitors. Pestic Biochem Physiol 174:104811. https://doi.org/10.1016/j.pestbp.2021.104811

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z-B, Wang H, Li J, Yu J-X, Lin H-Y, Dong L-Y (2022) Comparison of quintrione and quinclorac on mechanism of action. Pestic Biochem Physiol 181:105007. https://doi.org/10.1016/j.pestbp.2021.105007

    Article  CAS  PubMed  Google Scholar 

  16. Qu R-Y, He B, Yang J-F, Lin H-Y, Yang W-C, Wu Q-Y, Li Q-X, Yang G-F (2021) Where are the new herbicides? Pest Manag Sci 77:2620–2625. https://doi.org/10.1002/ps.6285

    Article  CAS  PubMed  Google Scholar 

  17. He B, Wu F-X, Yu L-K, Wu L, Chen Q, Hao G-F, Yang W-C, Lin H-Y, Yang G-F (2020) Discovery of novel pyrazole-quinazoline-2,4-dione hybrids as 4-hydroxyphenylpyruvate dioxygenase inhibitors. J Agric Food Chem 68(18):5059–5067. https://doi.org/10.1021/acs.jafc.0c00051

    Article  CAS  PubMed  Google Scholar 

  18. Lu H, Yu-Q H-P, Owen M-J, Powles S-B (2020) Evolution of resistance to hppd-inhibiting herbicides in a wild radish population via enhanced herbicide metabolism. Pest Manag Sci 76(5):1929–1937. https://doi.org/10.1002/ps.5725

    Article  CAS  PubMed  Google Scholar 

  19. Beaudegnies R, Edmunds AJF, Fraser TEM, Hall RG, Hawkes TR, Mitchell G, Schaetzer J, Wendeborn S, Wibley J (2009) Herbicidal 4-hydroxyphenylpyruvate dioxygenase inhibitors-A review of the triketone chemistry story from a Syngenta perspective. Bioorganic Med Chem Lett 17:4134–4152. https://doi.org/10.1016/j.bmc.2009.03.015

    Article  CAS  Google Scholar 

  20. Ndikuryayo F, Moosavi B, Yang W-C, Yang G-F (2017) 4-Hydroxyphenylpyruvate dioxygenase inhibitors: from chemical biology to agrochemicals. J Agric Food Chem 65(39):8523–8537. https://doi.org/10.1021/acs.jafc.7b03851

    Article  CAS  PubMed  Google Scholar 

  21. Governa P, Bernardini G, Braconi D, Manetti F, Santucci A, Petricci E (2022) Survey on the recent advances in 4-hydroxyphenylpyruvatedioxygenase (HPPD) inhibition by diketone and triketone derivatives and congeneric compounds: structural analysis of HPPD/inhibitor complexes and structure−activity relationship considerations. J Agric Food Chem 70:6963–6981. https://doi.org/10.1021/acs.jafc.2c02010

    Article  CAS  PubMed  Google Scholar 

  22. Yang C, Pflugrath JW, Camper DL, Foster ML, Pernich DJ, Walsh TA (2004) Structural basis for herbicidal inhibitor selectivity revealed by comparison of crystal structures of plant and mammalian 4-hydroxyphenylpyruvate dioxygenases. Biochemistry 43:10414–10423. https://doi.org/10.1021/bi049323o

    Article  CAS  PubMed  Google Scholar 

  23. Fu Y, Zhang S-Q, Liu Y-X, Wang J-Y, Gao S, Zhao L-X, Ye F (2019) Design, synthesis, SAR and molecular docking of novel green niacintriketone HPPD inhibitor. Ind Crops Prod 137:566–575. https://doi.org/10.1016/j.indcrop.2019.05.070

    Article  CAS  Google Scholar 

  24. Liu X-H, Qiao L, Zhai Z-W, Cai P-P, Cantrell CL, Tan C-X, Weng J-Q, Han L, Wu H-K (2019) Novel 4-pyrazole carboxamide derivatives containing flexible chain motif: Design, synthesis and antifungal activity. Pest Manag Sci 75(11):2892–2900. https://doi.org/10.1002/ps.5463

    Article  CAS  PubMed  Google Scholar 

  25. Tukur S, Shallangwa GA, Ibrahim A (2019) Theoretical QSAR modelling and molecular docking studies of some 4-hydroxyphenylpyruvate dioxygenase (HPPD) enzyme inhibitors potentially used as herbicides. Heliyon 5:e02859. https://doi.org/10.1016/j.heliyon.2019.e02859

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fu Q, Cai P-P, Cheng L, Zhong L-K, Tan C-X, Shen Z-H, Han L, Xu T-M, Liu X-H (2020) Synthesis and herbicidal activity of novel pyrazole aromatic ketone analogs as HPPD inhibitor. Pest Manag Sci 76:868–879. https://doi.org/10.1002/ps.5591

    Article  CAS  PubMed  Google Scholar 

  27. Zeng H-N, Zhang W, Wang Z-X, Gan X-H (2023) Discovery of novel pyrazole derivatives with improved crop safety as 4-hydroxyphenylpyruvate dioxygenase-targeted herbicides. J Agric Food Chem 71:3950–3959. https://doi.org/10.1021/acs.jafc.2c07551

    Article  CAS  PubMed  Google Scholar 

  28. Li D-K, Zheng Q-C, Li Z-Y, Xie Y, Zhang L-X, Zhao L-K, Yang Y, Liu Z-J, Na R-S (2022) Research progress of pyridine pesticides. Agrochemicals 61(10):705−712. https://doi.org/10.16820/j.nyzz.2022.1033.

  29. Burriss A, Edmunds AJ, Emery D, Hall RG, Jacob O, Schaetzer J (2018) The importance of trifluoromethyl pyridines in crop protection. Pest Manag Sci 74:1228–1238. https://doi.org/10.1002/ps.4806

    Article  CAS  PubMed  Google Scholar 

  30. Zheng Z-G, Dai A-L, Jin Z-C, Chi YGR, Wu J (2022) Trifluoromethylpyridine: an important active fragment for the discovery of new pesticides. J Agric Food Chem 70(36):11019–11030. https://doi.org/10.1021/acs.jafc.1c08383

    Article  CAS  PubMed  Google Scholar 

  31. Liu S-H, Dong P, Ren S-Q, Li J-L, Wen X-F, Wang X-L (2016) Summary in pyrazole agrochemicals. Fine Spec Chem 24(10):30−33. https://doi.org/10.19482/j.cn11-3237.2016.10.06

  32. Lu S-C, Feng J-Y, Li C-K, Wang W-L, Liu J, Cheng Y-N, Qu J-B, Yuan G-L, Su Q-F, Zhang H-Q, Na R-S (2020) New advances in synthesis of pyrazole pesticides. Agrochemicals 59(6):397−406. https://doi.org/10.16820/j.cnki.1006-0413.2020.06.002

  33. He B, Wang D-W, Yang W-C, Cheng Q, Yang G-F (2017) Advances in research on 4-hydroxyphenylpyruvate dioxygenase (HPPD) structure and pyrazole containing herbicides. Chinese J Org Chem 37:2895–2904. https://doi.org/10.6023/cjoc20170503

    Article  CAS  Google Scholar 

  34. Grossmann K, Ehrhardt T (2007) On the mechanism of action and selectivity of the corn herbicide topramezone: a new inhibitor of 4-hydroxyphenylpyruvate dioxygenase. Pest Manag Sci 63:429–439. https://doi.org/10.1002/ps.1341

    Article  CAS  PubMed  Google Scholar 

  35. Zhou S, Zhao L-T, Meng F-F, Hua X-W, Li Y-H, Liu B, Chen J, Chen A-L, Li Z-M (2022) Synthesis, herbicidal activity and soil degradation of novel 5-substituted sulfonylureas as AHAS inhibitors. Pest Manag Sci 78:5313–5324. https://doi.org/10.1002/ps.7153

    Article  CAS  PubMed  Google Scholar 

  36. Singh SB, Sharma R, Singh N (2012) Persistence of pyrazosulfuron in rice-field and laboratory soil under Indian tropical conditions. Pest Manag Sci 68:828–833. https://doi.org/10.1002/ps.2331

    Article  CAS  PubMed  Google Scholar 

  37. Chadha A, Florentine SK, Dhileepan K, Turville C, Dowling K (2022) Efficacy of halosulfuron-methyl in the management of Navua sedge (Cyperus aromaticus): differential responses of plants with and without established rhizomes. Weed Technol 36:397–402. https://doi.org/10.1017/wet.2022.29

    Article  Google Scholar 

  38. Nazish T, Huang Y-J, Zhang J, Xia J-Q, Alfatih A, Luo C, Cai X-T, Xi J, Xu P, Xiang C-B (2022) Understanding paraquat resistance mechanisms in Arabidopsis thaliana to facilitate the development of paraquat-resistant crops. Plant Commun 3:100321. https://doi.org/10.1016/j.xplc.2022.100321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Slade P, Smith A (1967) Photochemical degradation of Diquat. Nature 213:919–920. https://doi.org/10.1038/213919a0

    Article  CAS  Google Scholar 

  40. Sakurai K, Abe J, Hirasawa K, Takeuchi H, Kitamoto S (2021) Absorption, distribution, metabolism, and excretion of a new herbicide, epyrifenacil, in rats. J Agric Food Chem 69(44):13190–13199. https://doi.org/10.1021/acs.jafc.1c04167

    Article  CAS  PubMed  Google Scholar 

  41. Barlow SM, Terry C, Gehen S, Marco C (2022) Developmental toxicity studies on triclopyr acid, triclopyr butoxyethyl ester and triclopyr triethylamine salt in the rabbit. Food Chem Toxicol 161:112845. https://doi.org/10.1016/j.fct.2022.112845

    Article  CAS  PubMed  Google Scholar 

  42. Ma H-Y, Li M-Y, Yu T, Zhang H, Xiong M-H, Li F (2021) Magnetic ZIF-8-Based mimic multi-enzyme system as a colorimetric biosensor for detection of aryloxyphenoxypropionate herbicides. ACS Appl Mater Interfaces 13:44329–44338. https://doi.org/10.1021/acsami.1c11815

    Article  CAS  PubMed  Google Scholar 

  43. Liu C-L (2002) Aryloxyphenoxypropionate herbicides. Pesticides 2:30−38. https://doi.org/10.16820/j.cnki.1006-0413.2002.02.020

  44. Liu Q-X, Liu A-P, Hu A-X, Huang M-Z, Ou X-M, Zhou H-F (2015) Progress on 2-(4-Aroxyphenoxy) propionic acid derivatives. Agrochemicals 54(8):551−558. https://doi.org/10.16820/j.cnki.1006-0413.2015.08.002

  45. Huang H, Wang M-M, Shu L, Yan Y-L, Zhang J-Q, Liu J-M, Zhan X-H, Zhang D-Y (2020) Discovery of novel arylthioacetic acid derivatives as 4-hydroxyphenylpyruvate dioxygenase inhibitors. Pest Manag Sci 76:4112–4122. https://doi.org/10.1002/ps.5967

    Article  CAS  PubMed  Google Scholar 

  46. Sun J-L, Zhou Y-M (2015) Synthesis and antifungal activity of the derivatives of novel pyrazole carboxamide and isoxazolol pyrazole carboxylate. Molecules 20:4383–4394. https://doi.org/10.3390/molecules20034383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang X-B, Wang A, Qu L-L, Chen M, Lu A-M, Li G-H, Yang C-L, Xue W (2020) Expedient discovery for novel antifungal leads targeting succinate dehydrogenase: pyrazole-4-formylhydrazide derivatives bearing a diphenyl ether fragment. J Agric Food Chem 68(49):14426–14437. https://doi.org/10.1021/acs.jafc.0c03736

    Article  CAS  PubMed  Google Scholar 

  48. Yu D-D, Lin W-W, Forman B-M, Chen T-S (2014) Identification of trisubstituted-pyrazol carboxamide analogs as novel and potent antagonists of farnesoid X receptor. Bioorgan Med Chem 22:2919–2938. https://doi.org/10.1016/j.bmc.2014.04.014

    Article  CAS  Google Scholar 

  49. Chianelli D, Rucker PV, Roland J, Tully DC, Nelson J, Liu X, Bursulaya B, Hernandez ED, Wu J, Prashad M, Schlama T, Liu Y, Chu A, Schmeits J, Huang D-J, Hill R, Bao D, Zoll J, Kim Y, Groessl T, Mcnamara P, Liu B, Richmond W, Sancho-Martinez I, Phimister A, Seidel HM, Badman MK, Joseph SB, Laffitte B, Molteni V (2020) Nidufexor (lmb763), a novel fxr modulator for the treatment of nonalcoholic steatohepatitis. J Med Chem 63:3868–3880. https://doi.org/10.1021/acs.jmedchem.9b01621

    Article  CAS  PubMed  Google Scholar 

  50. Kuo P-Y, Chuang R-R, Yang D-Y (2009) Reactions of 3-benzoyl-7-dimethylamino-4-hydroxycoumarin and their potential applications in solution- and solid-phase synthesis. Mol Divers 13:253–260. https://doi.org/10.1007/s11030-009-9107-2

    Article  CAS  PubMed  Google Scholar 

  51. Ye F, Ma P, Zhai Y, Yang F, Gao S, Zhao L-X, Fu Y (2018) Design, microwave-assisted synthesis, bioactivity and sar of novel substituted 2-phenyl-2-cyclohexanedione enol ester derivatives. RSC Adv 8:19883–19893. https://doi.org/10.1039/c8ra02647e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Spek AL (2003) Single-crystal structure validation with the program platon. J Appl Crystallogr 36(1):7–13. https://doi.org/10.1107/s0021889802022112

    Article  CAS  Google Scholar 

  53. Kang J, Yue X-L, Chen C-S, Li J-H, Ma H-J (2016) Synthesis and herbicidal activity of 5-heterocycloxy-3-methyl-1-substituted-1h-pyrazoles. Molecules 21(1):39. https://doi.org/10.3390/molecules21010039

    Article  CAS  Google Scholar 

  54. Fu Y, Zhang D, Zhang S-Q, Liu Y-X, Guo Y-Y, Wang M-X, Gao S, Zhao L-X, Ye F (2019) Discovery of N-aroyl diketone/triketone derivatives as novel 4-hydroxyphenylpyruvate dioxygenase inhibiting-based herbicides. J Agric Food Chem 67:11839–11847. https://doi.org/10.1021/acs.jafc.9b01412

    Article  CAS  PubMed  Google Scholar 

  55. Bhatt P, Kumar M, Jha A (2018) Synthesis, docking and anticancer activity of azo-linked hybrids of 1,3,4-thia-/oxadiazoles with cyclic imides. Mol Divers 22:827–840. https://doi.org/10.1007/s11030-018-9832-5

    Article  CAS  PubMed  Google Scholar 

  56. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1:19–25. https://doi.org/10.1016/j.softx.2015.06.001

    Article  Google Scholar 

  57. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the grants from Fundamental Research Funds for the Central Universities of China (No. KYTZ201604) and Student Innovation Research and Entrepreneurship Training of Nanjing Agricultural University (No. 202223XX439).

Funding

Funding was provided by Fundamental Research Funds for the Central Universities of China (Grant No. KYTZ201604) and Student Innovation Research and Entrepreneurship Training of Nanjing Agricultural University (Grant No. 202223XX439).

Author information

Authors and Affiliations

Authors

Contributions

H.S.T and H.L wrote the main manuscript text. L.W.R and D.G.Y prepared figures 1-3. L.Y and L.A.M prepared figures 8-9. Y.C.L and C.M participated in the revision of the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Chun-Long Yang or Min Chen.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4152 KB)

Appendix A

Appendix A

The physical and spectroscopic data, crystal structure information and molecular docking related information of title compounds are provided in the Supporting Information. The copies of corresponding 1H NMR, 13C NMR, and HRMS spectrograms are also presented in the Supporting Information.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, ST., Han, L., Li, WR. et al. Design, synthesis and herbicidal activity of novel cyclohexanedione derivations containing pyrazole and pyridine groups as potential HPPD inhibitors. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10836-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10836-6

Keywords

Navigation