Skip to main content

Advertisement

Log in

Exploring host epigenetic enzymes as targeted therapies for visceral leishmaniasis: in silico design and in vitro efficacy of KDM6B and ASH1L inhibitors

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In order to combat various infectious diseases, the utilization of host-directed therapies as an alternative to chemotherapy has gained a lot of attention in the recent past, since it bypasses the existing limitations of conventional therapies. The use of host epigenetic enzymes like histone lysine methyltransferases and lysine demethylases as potential drug targets has successfully been employed for controlling various inflammatory diseases like rheumatoid arthritis and acute leukemia. In our earlier study, we have already shown that the functional knockdown of KDM6B and ASH1L in the experimental model of visceral leishmaniasis has resulted in a significant reduction of organ parasite burden. Herein, we performed a high throughput virtual screening against KDM6B and ASH1L using > 53,000 compounds that were obtained from the Maybridge library and PubChem Database, followed by molecular docking to evaluate their docking score/Glide Gscore. Based on their docking scores, the selected inhibitors were later assessed for their in vitro anti-leishmanial efficacy. Out of all inhibitors designed against KDM6B and ASH1L, HTS09796, GSK-J4 and AS-99 particularly showed promising in vitro activity with IC50 < 5 µM against both extracellular promastigote and intracellular amastigote forms of L. donovani. In vitro drug interaction studies of these inhibitors further demonstrated their synergistic interaction with amphotericin-B and miltefosine. However, GSK-J4 makes an exception by displaying an in different mode of interaction with miltefosine. Collectively, our in silico and in vitro studies acted as a platform to identify the applicability of these inhibitors targeted against KDM6B and ASH1L for anti-leishmanial therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

ASH1L:

Histone lysine N-methyltransferase

BLAST:

Basic local alignment search tool

CC50 :

50% Cytotoxicity concentration

CRK12:

Cell division cycle-2-related kinase 12

DNMT:

DNA methyltransferases

FDA:

Food and drug administration

GUI:

Graphical user interface

HDAC:

Histone deacetylases

IC50 :

Half-maximal inhibitory concentration

KMTs:

Histone lysine methyltransferases

KDMs:

Histone lysine demethylases

KDM6B:

Histone lysine demethylase 6B

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

OPLS:

Optimized potentials for liquid simulations

PDB:

Protein data bank

QSAR:

Quantitative structure- activity relationship

RMSD:

Root mean square deviation

RLU:

Relative luminescence unit

VL:

Visceral leishmaniasis

References

  1. Burza S, Croft SL, Boelaert M (2018) Leishmaniasis. Lancet 392:951–970. https://doi.org/10.1016/S0140-6736(18)31204-2

    Article  PubMed  Google Scholar 

  2. Uliana SRB, Trinconi CT, Coelho AC (2018) Chemotherapy of leishmaniasis: present challenges. Parasitology 145:464–480. https://doi.org/10.1017/S0031182016002523

    Article  CAS  PubMed  Google Scholar 

  3. Novais FO, Amorim CF, Scott P (2021) Host-directed therapies for cutaneous leishmaniasis. Front Immunol 12:660183. https://doi.org/10.3389/fimmu.2021.660183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. van Griensven J, Balasegaram M, Meheus F et al (2010) Combination therapy for visceral leishmaniasis. Lancet Infect Dis 10:184–194. https://doi.org/10.1016/S1473-3099(10)70011-6

    Article  PubMed  Google Scholar 

  5. Martinez-Hernandez JE, Hammoud Z, de Sousa AM et al (2021) Network-based approaches reveal potential therapeutic targets for host-directed antileishmanial therapy driving drug repurposing. Microbiol Spectr 9:e0101821. https://doi.org/10.1128/Spectrum.01018-21

    Article  PubMed  Google Scholar 

  6. Takeuch O, Akira S (2011) Epigenetic control of macrophage polarization. Eur J Immunol 41:2490–2493. https://doi.org/10.1002/eji.201141792

    Article  CAS  PubMed  Google Scholar 

  7. Afrin F, Khan I, Hemeg HA (2019) Leishmania-host interactions-an epigenetic paradigm. Front Immunol 10:492. https://doi.org/10.3389/fimmu.2019.00492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Greer EL, Shi Y (2012) Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet 13:343–357. https://doi.org/10.1038/nrg3173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tao L, Zhou Y, Luo Y et al (2024) Epigenetic regulation in cancer therapy: From mechanisms to clinical advances. MedComm Oncol 3:e59. https://doi.org/10.1002/mog2.59

    Article  Google Scholar 

  10. Rogawski DS, Deng J, Li H et al (2021) Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity. Nat Commun 12:2792. https://doi.org/10.1038/s41467-021-23152-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao Z, Zhang Y, Gao D et al (2022) Inhibition of histone H3 lysine-27 demethylase activity relieves rheumatoid arthritis symptoms via repression of il6 transcription in macrophages. Front Immunol 13:818070. https://doi.org/10.3389/fimmu.2022.818070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Punnia-Moorthy G, Hersey P, Emran AA, Tiffen J (2021) Lysine demethylases: promising drug targets in melanoma and other cancers. Front Genet 12:680633. https://doi.org/10.3389/fgene.2021.680633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eckschlager T, Plch J, Stiborova M, Hrabeta J (2017) Histone deacetylase inhibitors as anticancer drugs. Int J Mol Sci 18:1414. https://doi.org/10.3390/ijms18071414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Majchrzak-Celińska A, Warych A, Szoszkiewicz M (2021) Novel approaches to epigenetic therapies: from drug combinations to epigenetic editing. Genes (Basel) 12:208. https://doi.org/10.3390/genes12020208

    Article  CAS  PubMed  Google Scholar 

  15. Prieto Cárdenas LS, Arias Soler KA, Nossa González DL et al (2022) In silico antiprotozoal evaluation of 1,4-naphthoquinone derivatives against chagas and leishmaniasis diseases using QSAR, molecular docking, and ADME approaches. Pharmaceuticals (Basel) 15:687. https://doi.org/10.3390/ph15060687

    Article  CAS  PubMed  Google Scholar 

  16. Hu C, Liu X, Zeng Y et al (2021) DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clin Epigenetics 13:166. https://doi.org/10.1186/s13148-021-01154-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Parmar N, Chandrakar P, Kar S (2020) Leishmania donovani subverts host immune response by epigenetic reprogramming of macrophage M(Lipopolysaccharides + IFN-γ)/M(IL-10) polarization. J Immunol 204:2762–2778. https://doi.org/10.4049/jimmunol.1900251

    Article  CAS  PubMed  Google Scholar 

  18. Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119. https://doi.org/10.1093/nar/gkh131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research 32: W20–W25. https://doi.org/10.1093/nar/gkh435

  20. Boratyn GM, Camacho C, Cooper PS, et al (2013) BLAST: a more efficient report with usability improvements. Nucleic Acids Research 41: W29–W33. https://doi.org/10.1093/nar/gkt282

  21. Goodsell DS, Zardecki C, Di Costanzo L et al (2020) RCSB protein data bank: enabling biomedical research and drug discovery. Protein Sci 29:52–65. https://doi.org/10.1002/pro.3730

    Article  CAS  PubMed  Google Scholar 

  22. Jacobson M, Sali A (2004) Comparative protein structure modeling and its applications to drug discovery. Annual reports in medicinal chemistry. Elsevier, pp 259–276

    Google Scholar 

  23. Shen MY, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524. https://doi.org/10.1110/ps.062416606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheik SS, Sundararajan P, Hussain ASZ, Sekar K (2002) Ramachandran plot on the web. Bioinformatics 18:1548–1549. https://doi.org/10.1093/bioinformatics/18.11.1548

    Article  CAS  PubMed  Google Scholar 

  25. Hollingsworth SA, Karplus PA (2010) A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. BioMolecular Concepts 1:271–283. https://doi.org/10.1515/bmc.2010.022

  26. Madhavi Sastry G, Adzhigirey M, Day T et al (2013) Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des 27:221–234. https://doi.org/10.1007/s10822-013-9644-8

    Article  CAS  PubMed  Google Scholar 

  27. Kruidenier L, Chung C, Cheng Z et al (2012) A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response. Nature 488:404–408. https://doi.org/10.1038/nature11262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Michaux C, De Leval X, Julémont F et al (2006) Structure-based pharmacophore of COX-2 selective inhibitors and identification of original lead compounds from 3D database searching method. Eur J Med Chem 41:1446–1455. https://doi.org/10.1016/j.ejmech.2006.07.017

    Article  CAS  PubMed  Google Scholar 

  29. Devi B, Rajagopal K, Elizabeth E (2017) Pharmacophoric screening of various endophytic fungal metabolites. Asian J Pharm Clin Res 10:140. https://doi.org/10.22159/ajpcr.2017.v10i5.17157

    Article  CAS  Google Scholar 

  30. Ribeiro R, Botelho FD, Pinto AMV et al (2023) Molecular modeling study of natural products as potential bioactive compounds against SARS-CoV-2. J Mol Model 29:183. https://doi.org/10.1007/s00894-023-05586-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dixon SL, Smondyrev AM, Knoll EH et al (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20:647–671. https://doi.org/10.1007/s10822-006-9087-6

    Article  CAS  PubMed  Google Scholar 

  32. Pribadi C, Camp E, Cakouros D et al (2020) Pharmacological targeting of KDM6A and KDM6B, as a novel therapeutic strategy for treating craniosynostosis in Saethre-Chotzen syndrome. Stem Cell Res Ther 11:529. https://doi.org/10.1186/s13287-020-02051-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hung PH, Hsu YC, Chen TH et al (2022) The histone demethylase inhibitor GSK-J4 Is a therapeutic target for the kidney fibrosis of diabetic kidney disease via DKK1 modulation. Int J Mol Sci 23:9407. https://doi.org/10.3390/ijms23169407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bai SB, Geethavani M, Ramakrishna C (2022) Synthesis characterization and molinspiration analysis, anti-bacterial activity of novel 2,4,6-tri substituted pyrimidines. J Young Pharm 14:174–178. https://doi.org/10.5530/jyp.2022.14.33

    Article  CAS  Google Scholar 

  35. Ntie-Kang F (2013) An in silico evaluation of the ADMET profile of the StreptomeDB database. Springerplus 2:353. https://doi.org/10.1186/2193-1801-2-353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hou P, Huang C, Liu C-P et al (2019) Structural insights into stimulation of Ash1L’s H3K36 methyltransferase activity through Mrg15 binding. Structure 27:837–845.e3. https://doi.org/10.1016/j.str.2019.01.015

    Article  CAS  PubMed  Google Scholar 

  37. Friesner RA, Murphy RB, Repasky MP et al (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein−ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  38. Anand D, Yadav PK, Patel OPS et al (2017) Antileishmanial activity of pyrazolopyridine derivatives and their potential as an adjunct therapy with miltefosine. J Med Chem 60:1041–1059. https://doi.org/10.1021/acs.jmedchem.6b01447

    Article  CAS  PubMed  Google Scholar 

  39. Huber W, Koella JC (1993) A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop 55:257–261. https://doi.org/10.1016/0001-706x(93)90083-n

    Article  CAS  PubMed  Google Scholar 

  40. Fivelman QL, Adagu IS, Warhurst DC (2004) Modified fixed-ratio isobologram method for studying in vitro interactions between atovaquone and proguanil or dihydroartemisinin against drug-resistant strains of Plasmodium falciparum. Antimicrob Agents Chemother 48:4097–4102. https://doi.org/10.1128/AAC.48.11.4097-4102.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. De I, Müller CW (2019) Unleashing the power of ASH1L methyltransferase. Structure 27:727–728. https://doi.org/10.1016/j.str.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  42. Yu M, Jia Y, Ma Z et al (2022) Structural insight into ASH1L PHD finger recognizing methylated histone H3K4 and promoting cell growth in prostate cancer. Front Oncol 12:906807. https://doi.org/10.3389/fonc.2022.906807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kurmasheva RT, Erickson SW, Han R et al (2021) In vivo evaluation of the lysine-specific demethylase (KDM1A/LSD1) inhibitor SP-2577 (Seclidemstat) against pediatric sarcoma preclinical models: a report from the pediatric preclinical testing consortium (PPTC). Pediatr Blood Cancer 68:e29304. https://doi.org/10.1002/pbc.29304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reed DR, Mascarenhas L, Meyers PA et al (2020) A phase I/II clinical trial of the reversible LSD1 inhibitor, seclidemstat, in patients with relapsed/refractory Ewing sarcoma. JCO 38:TPS11567–TPS11567. https://doi.org/10.1200/JCO.2020.38.15_suppl.TPS11567

    Article  Google Scholar 

  45. Ahmad S, Bhagwati S, Kumar S et al (2020) Molecular modeling assisted identification and biological evaluation of potent cathepsin S inhibitors. J Mol Graph Model 96:107512. https://doi.org/10.1016/j.jmgm.2019.107512

    Article  CAS  PubMed  Google Scholar 

  46. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. https://doi.org/10.1021/ja9621760

    Article  CAS  Google Scholar 

  47. Bhagwati S, Siddiqi MI (2020) Identification of potential soluble epoxide hydrolase (sEH) inhibitors by ligand-based pharmacophore model and biological evaluation. J Biomol Struct Dyn 38:4956–4966. https://doi.org/10.1080/07391102.2019.1691659

    Article  CAS  PubMed  Google Scholar 

  48. Rebello KM, Andrade-Neto VV, Gomes CRB et al (2019) Miltefosine-lopinavir combination therapy against Leishmania infantum infection: in vitro and in vivo approaches. Front Cell Infect Microbiol 9:229. https://doi.org/10.3389/fcimb.2019.00229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Emiliano YSS, Almeida-Amaral EE (2018) Efficacy of apigenin and miltefosine combination therapy against experimental Cutaneous Leishmaniasis. J Nat Prod 81:1910–1913. https://doi.org/10.1021/acs.jnatprod.8b00356

    Article  CAS  PubMed  Google Scholar 

  50. Berenbaum MC (1989) What is synergy? Pharmacol Rev 41:93–141

    CAS  PubMed  Google Scholar 

  51. Lobo-Silva J, Cabral FJ, Amaral MS et al (2020) The antischistosomal potential of GSK-J4, an H3K27 demethylase inhibitor: insights from molecular modeling, transcriptomics and in vitro assays. Parasit Vectors 13:140. https://doi.org/10.1186/s13071-020-4000-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kashif M, Paladhi A, Singh R et al (2020) Leishmanicidal activity of an in silico-screened novel inhibitor against ascorbate peroxidase of Leishmania donovani. Antimicrob Agents Chemother 64:e01766–e01819. https://doi.org/10.1128/AAC.01766-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ângelo de Souza L, Silva Bastos M, de Melo AJ et al (2020) Histone deacetylases inhibitors as new potential drugs against Leishmania braziliensis, the main causative agent of new world tegumentary leishmaniasis. Biochem Pharmacol 180:114191. https://doi.org/10.1016/j.bcp.2020.114191

    Article  CAS  PubMed  Google Scholar 

  54. Huang L, Jiang Y, Chen Y (2017) Predicting drug combination index and simulating the network-regulation dynamics by mathematical modeling of drug-targeted EGFR-ERK signaling pathway. Sci Rep 7:40752. https://doi.org/10.1038/srep40752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Huang RY, Pei L, Liu Q et al (2019) Isobologram analysis: a comprehensive review of methodology and current research. Front Pharmacol 10:1222. https://doi.org/10.3389/fphar.2019.01222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Neena Goyal, Division of Biochemistry and Structural Biology, CSIR-CDRI, Lucknow, India, for providing us with transgenic L. donovani promastigotes. The authors extend their gratitude to Dr. Sanjay Batra, Division of Medicinal and Process Chemistry, CSIR-CDRI, Lucknow, India, for providing the Maybridge library compounds (sourced from the chemical repository of CSIR-CDRI, Lucknow) for the in vitro assessment conducted in this study.

Funding

The study was funded by the Department of Biotechnology (BT/PR32490/MED/29/1457/2019) & Department of Science & Technology (DST, CRG/2020/002932), New Delhi, India and CSIR-CDRI in-house project. The author M.D. & U.K. is thankful to CSIR & UGC, New Delhi respectively for providing financial assistance in the form of fellowship. T.Q. acknowledges the Department of Science & Technology (DST, CRG/2020/002932), New Delhi, for the project fellowship.

Author information

Authors and Affiliations

Authors

Contributions

MD, TQ and SK conceived and designed the study. MD and TQ performed and analyzed the results of biological experiments. TQ, UK and MIS performed and analyzed the results of computational studies. MD and TQ prepared the figures and wrote the original manuscript. Overall supervision, conceptualization, acquisition of funding & manuscript editing was done by SK. All authors reviewed the manuscript.

Corresponding author

Correspondence to Susanta Kar.

Ethics declarations

Conflict of interest

The authors state that none of the work described in this manuscript appears to have been influenced by any known financial interests or personal relationships.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, M., Qamar, T., Kushavah, U. et al. Exploring host epigenetic enzymes as targeted therapies for visceral leishmaniasis: in silico design and in vitro efficacy of KDM6B and ASH1L inhibitors. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10824-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10824-w

Keywords

Navigation