Skip to main content

Advertisement

Log in

Identification of novel potential cathepsin-B inhibitors through pharmacophore-based virtual screening, molecular docking, and dynamics simulation studies for the treatment of Alzheimer’s disease

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Cathepsin B is a cysteine protease lysosomal enzyme involved in several physiological functions. Overexpression of the enzyme enhances its proteolytic activity and causes the breakdown of amyloid precursor protein (APP) into neurotoxic amyloid β (Aβ), a characteristic hallmark of Alzheimer’s disease (AD). Therefore, inhibition of the enzyme is a crucial therapeutic aspect for treating the disease. Combined structure and ligand-based drug design strategies were employed in the current study to identify the novel potential cathepsin B inhibitors. Five different pharmacophore models were developed and used for the screening of the ZINC-15 database. The obtained hits were analyzed for the presence of duplicates, interfering PAINS moieties, and structural similarities based on Tanimoto’s coefficient. The molecular docking study was performed to screen hits with better target binding affinity. The top seven hits were selected and were further evaluated based on their predicted ADME properties. The resulting best hits, ZINC827855702, ZINC123282431, and ZINC95386847, were finally subjected to molecular dynamics simulation studies to determine the stability of the protein–ligand complex during the run. ZINC123282431 was obtained as the virtual lead compound for cathepsin B inhibition and may be a promising novel anti-Alzheimer agent.

Graphical abstract

The methodology utilized for the identification of novel cathepsin B inhibitors through combined structure and ligand-based drug design approach:

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Cummings J et al (2016) Drug development in Alzheimer’s disease: the path to 2025. Alzheimer’s Res Therap 8:1–12

    Google Scholar 

  2. Castellani RJ, Rolston RK, Smith MA (2010) Alzheimer disease. Disease-a-Month: DM 56(9):484

    Article  PubMed  Google Scholar 

  3. Ju Y, Tam KY (2022) Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen Res 17(3):543

    Article  CAS  PubMed  Google Scholar 

  4. Zhang W et al (2020) Association of rare variants in neurodegenerative genes with familial Alzheimer’s disease. Ann Clin Transl Neurol 7(10):1985–1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roy K (2023) Computational modeling of drugs against Alzheimer’s disease, vol 203. Springer

    Book  Google Scholar 

  6. Srivastava S, Ahmad R, Khare SK (2021) Alzheimer’s disease and its treatment by different approaches: a review. Eur J Med Chem 216:113320

    Article  CAS  PubMed  Google Scholar 

  7. Gasteiger E et al (2003) ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 31(13):3784–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Patel S et al (2018) Cathepsins: Proteases that are vital for survival but can also be fatal. Biomed Pharmacother 105:526–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pišlar A, Kos J (2014) Cysteine cathepsins in neurological disorders. Mol Neurobiol 49:1017–1030

    Article  PubMed  Google Scholar 

  10. Sharma A et al (2022) Cathepsin BA neuronal death mediator in Alzheimer’s disease leading to neurodegeneration. Mini Rev Med Chem 22(15):2012–2023

    Article  CAS  PubMed  Google Scholar 

  11. Kelley N et al (2019) The NLRP3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13):3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hafner-Bratkovič I et al (2012) NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity. Cell Mol Life Sci 69:4215–4228

    Article  PubMed  PubMed Central  Google Scholar 

  13. Campden RI, Zhang Y (2019) The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. Arch Biochem Biophys 670:32–42

    Article  CAS  PubMed  Google Scholar 

  14. Schaschke N et al (1997) E-64 analogues as inhibitors of cathepsin B: on the role of the absolute configuration of the epoxysuccinyl group. Bioorg Med Chem 5(9):1789–1797

    Article  CAS  PubMed  Google Scholar 

  15. Chitranshi N et al (2021) Identification of novel cathepsin B inhibitors with implications in Alzheimer’s disease: computational refining and biochemical evaluation. Cells 10(8):1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou Z, Wang Y, Bryant SH (2010) QSAR models for predicting cathepsin B inhibition by small molecules—continuous and binary QSAR models to classify cathepsin B inhibition activities of small molecules. J Mol Graph Model 28(8):714–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Greenspan PD et al (2001) Identification of dipeptidyl nitriles as potent and selective inhibitors of cathepsin B through structure-based drug design. J Med Chem 44(26):4524–4534

    Article  CAS  PubMed  Google Scholar 

  18. Mendieta L et al (2010) Novel peptidyl aryl vinyl sulfones as highly potent and selective inhibitors of cathepsins L and B. ChemMedChem 5(9):1556–1567

    Article  CAS  PubMed  Google Scholar 

  19. Albeck A (2000) Peptidyl epoxides as selective protease inactivators. Drug Dev Res 50(3–4):425–434

    Article  CAS  Google Scholar 

  20. Rasnick D (1985) Synthesis of peptide fluoromethyl ketones and the inhibition of human cathepsin B. Anal Biochem 149(2):461–465

    Article  CAS  PubMed  Google Scholar 

  21. Sosič I et al (2013) Development of new cathepsin B inhibitors: combining bioisosteric replacements and structure-based design to explore the structure–activity relationships of nitroxoline derivatives. J Med Chem 56(2):521–533

    Article  PubMed  Google Scholar 

  22. Yoon MC et al (2022) Molecular features of CA-074 pH-dependent inhibition of cathepsin B. Biochemistry 61(4):228–238

    Article  CAS  PubMed  Google Scholar 

  23. Pan X et al (2005) Amentoflavone and its derivatives as novel natural inhibitors of human cathepsin B. Bioorg Med Chem 13(20):5819–5825

    Article  CAS  PubMed  Google Scholar 

  24. Sabe VT et al (2021) Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. Eur J Med Chem 224:113705

    Article  CAS  PubMed  Google Scholar 

  25. Reddy AS et al (2007) Virtual screening in drug discovery—a computational perspective. Curr Protein Pept Sci 8(4):329–351

    Article  CAS  PubMed  Google Scholar 

  26. Yang S-Y (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discovery Today 15(11–12):444–450

    Article  CAS  PubMed  Google Scholar 

  27. Yamamoto A et al (2000) Substrate specificity of bovine cathepsin B and its inhibition by CA074, based on crystal structure refinement of the complex. J Biochem 127(4):635–643

    Article  CAS  PubMed  Google Scholar 

  28. Sunseri J, Koes DR (2016) Pharmit: interactive exploration of chemical space. Nucleic Acids Res 44(W1):W442–W448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kchouk S, Hegazy L (2022) Pharmacophore modeling for biological targets with high flexibility: LXRβ case study. Med Drug Discov 15:100135

    Article  CAS  Google Scholar 

  30. Bhagwati S, Siddiqi MI (2020) Identification of potential soluble epoxide hydrolase (sEH) inhibitors by ligand-based pharmacophore model and biological evaluation. J Biomol Struct Dyn 38(16):4956–4966

    Article  CAS  PubMed  Google Scholar 

  31. Mysinger MM et al (2012) Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J Med Chem 55(14):6582–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Heller SR et al (2015) InChI, the IUPAC international chemical identifier. J Cheminf 7(1):1–34

    Article  CAS  Google Scholar 

  33. O’Boyle NM et al (2011) Open Babel: an open chemical toolbox. J Cheminf 3(1):1–14

    Google Scholar 

  34. Pouliot M, Jeanmart S (2016) Pan assay interference compounds (PAINS) and other promiscuous compounds in antifungal research. J Med Chem 59(2):497–503

    Article  CAS  PubMed  Google Scholar 

  35. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7(1):42717

    Article  PubMed  PubMed Central  Google Scholar 

  36. Berthold MR et al (2009) KNIME-the Konstanz information miner: version 2.0 and beyond. AcM SIGKDD Explor Newslett 11(1):26–31

    Article  Google Scholar 

  37. Tian S et al (2015) The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Deliv Rev 86:2–10

    Article  CAS  PubMed  Google Scholar 

  38. Wager TT et al (2010) Moving beyond rules: the development of a central nervous system multiparameter optimization (CNS MPO) approach to enable alignment of druglike properties. ACS Chem Neurosci 1(6):435–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ashton M et al (2002) Identification of diverse database subsets using property-based and fragment-based molecular descriptions. Quant Struct-Act Relat 21(6):598–604

    Article  CAS  Google Scholar 

  40. Yamashima T et al (1998) Inhibition of ischaemic hippocampal neuronal death in primates with cathepsin B inhibitor CA-074: a novel strategy for neuroprotection based on ‘calpain–cathepsin hypothesis.’ Eur J Neurosci 10(5):1723–1733

    Article  CAS  PubMed  Google Scholar 

  41. Hook V et al (2020) Cathepsin B in neurodegeneration of Alzheimer’s disease, traumatic brain injury, and related brain disorders. Biochim Biophys Acta 1868(8):140428

    Article  CAS  Google Scholar 

  42. Pettersen EF et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  43. Šali A et al (1995) Evaluation of comparative protein modeling by MODELLER. Proteins: Struct Funct Bioinf 23(3):318–326

    Article  Google Scholar 

  44. Mackay D, Cross A, Hagler A (1989) The role of energy minimization in simulation strategies of biomolecular systems. Prediction of protein structure and the principles of protein conformation. Springer, pp 317–358

    Chapter  Google Scholar 

  45. Hevener KE et al (2009) Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model 49(2):444–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pinto VDS et al (2019) In silico study to identify new antituberculosis molecules from natural sources by hierarchical virtual screening and molecular dynamics simulations. Pharmaceuticals 12(1):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiong G et al (2021) ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 49(W1):W5–W14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Salo-Ahen OM et al (2020) Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes 9(1):71

    Article  Google Scholar 

  49. Aier I, Varadwaj PK, Raj U (2016) Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Sci Rep 6(1):34984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cob-Calan NN et al (2019) Molecular docking and dynamics simulation of protein β-tubulin and antifungal cyclic lipopeptides. Molecules 24(18):3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tripathi N et al (2022) Virtual screening and molecular simulation study of natural products database for lead identification of novel coronavirus main protease inhibitors. J Biomol Struct Dyn 40(8):3655–3667

    Article  CAS  PubMed  Google Scholar 

  52. Ghahremanian S et al (2022) Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: a structural review. J Mol Liq 354:118901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Parida PK, Paul D, Chakravorty D (2020) The natural way forward: molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS-CoV-2 targets. Phytother Res 34(12):3420–3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jiang Z et al (2019) Effects of an electric field on the conformational transition of the protein: a molecular dynamics simulation study. Polymers 11(2):282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ausaf Ali S et al (2014) A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states. Curr Protein Pept Sci 15(5):456–476

    Article  Google Scholar 

Download references

Acknowledgements

JJ and RS would like to express their gratitude for the financial research assistance provided to them through teaching assistantships by the Ministry of Education (MoE), New Delhi, India. NGB is genuinely grateful to the MoE for giving him the PMRF fellowship. We gladly acclimate the resources and assistance offered by the “PARAM Shivay Facility” at the Indian Institute of Technology (BHU), Varanasi, as part of the National Supercomputing Mission, Government of India. We also wish to thank the Centre for Computing and Information Services (CCIS), Indian Institute of Technology (BHU), Varanasi, for the computational assistance.

Author information

Authors and Affiliations

Authors

Contributions

JJ: design, conceptualization, data curation, molecular modeling and original draft preparation. NGB: computational modeling, guidance, editing and reviewing of the manuscript. RS: molecular docking. AK: supervision. SKS: supervision, reviewing, administering, and editing of the manuscript.

Corresponding author

Correspondence to Sushil Kumar Singh.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1647 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangra, J., Bajad, N.G., Singh, R. et al. Identification of novel potential cathepsin-B inhibitors through pharmacophore-based virtual screening, molecular docking, and dynamics simulation studies for the treatment of Alzheimer’s disease. Mol Divers (2024). https://doi.org/10.1007/s11030-024-10821-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-024-10821-z

Keywords

Navigation