Skip to main content

Advertisement

Log in

Identification of novel potential inhibitors of monkeypox virus thymidine kinase using molecular docking, molecular dynamics simulation and MM/PBSA methods

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The monkeypox spread has been announced a public health emergency of international concern (PHEIC) by the World Health Organization (WHO). Both monkeypox and smallpox viruses are placed in the genus Orthopoxvirus. Despite recommendations for the administration of smallpox drugs versus monkeypox, no specific drug for monkeypox has yet been introduced. A reliable and effective method against this outbreak can be the use of natural products. This study aimed for identification of natural flavonoid derivatives as potential thymidine kinase inhibitors, the main drug target of monkeypox virus. Thymidine kinase protein structure was predicted by homology modeling and the quality of generated model was evaluated. Then, the interaction between natural flavonoids and the modeled thymidine kinase was explored by molecular docking. Based on docking results, more than half of the flavonoids with higher docking scores compared to reference drug (ganciclovir) were exhibited better binding affinities toward the protein. In addition, stability of the top flavonoids including eupatorin, fisetin, rhamnetin and scutellarein, was confirmed by MD simulations and binding free energy calculations using MM/PBSA analysis. These selected compounds were also shown acceptable results for drug likeness and ADMET analysis. Therefore, the results of the study showed that these flavonoids could be considered as potential thymidine kinase inhibitors for use against monkeypox virus.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

MPXV:

Human Monkeypox Virus

WHO:

World Health Organization

MD:

Molecular dynamics

GROMACS:

GROningenMaChine for chemical simulations

RMSD:

Root-mean-square deviation

PDB:

Protein data bank

Rg:

Radius of gyration

RMSF:

Root-mean-square fluctuation

MM/PBSA:

Molecular mechanic/Poisson–Boltzmann surface Area

SPC:

Simple point charge

SASA:

Solvent accessible surface area

References

  1. Pastula DM, Tyler KL (2022) An overview of monkeypox virus and its neuroinvasive potential. Ann Neurol 92:527–531

    Article  PubMed  Google Scholar 

  2. Lai C-C, Hsu C-K, Yen M-Y, Lee P-I, Ko W-C, Hsueh P-R (2022) Monkeypox: an emerging global threat during the COVID-19 pandemic. J Microbiol Immunol Infect 55:787–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shafaati M, Zandi M (2022) Monkeypox virus neurological manifestations in comparison to other orthopoxviruses. Travel Med Infect Dis 49:102414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kabuga AI, El Zowalaty ME (2019) A review of the monkeypox virus and a recent outbreak of skin rash disease in Nigeria. J Med Virol 91:533–540

    Article  PubMed  Google Scholar 

  5. Petersen E, Abubakar I, Ihekweazu C, Heymann D, Ntoumi F, Blumberg L, Asogun D, Mukonka V, Lule SA, Bates M (2019) Monkeypox-Enhancing public health preparedness for an emerging lethal human zoonotic epidemic threat in the wake of the smallpox post-eradication era. Int J Infect Dis 78:78–84

    Article  PubMed  Google Scholar 

  6. Luna N, Ramírez AL, Muñoz M, Ballesteros N, Patiño LH, Castañeda SA, Bonilla-Aldana DK, Paniz-Mondolfi A, Ramírez JD (2022) Phylogenomic analysis of the monkeypox virus (MPXV) 2022 outbreak: emergence of a novel viral lineage? Travel Med Infect Dis 49:102402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dubey A, Alawi MM, Alandijany TA, Alsaady IM, altwaim SA, Sahoo AK, Dwivedi VD, Azhar EI, (2023) Exploration of microbially derived natural compounds against monkeypox virus as viral core cysteine proteinase inhibitors. Viruses 15:251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sahoo AK, Augusthian PD, Muralitharan I, Vivek-Ananth RP, Kumar K, Kumar G, Ranganathan G, Samal A (2022) In silico identification of potential inhibitors of vital monkeypox virus proteins from FDA approved drugs. Mol Div 1–16

  9. Weinstein RA, Nalca A, Rimoin AW, Bavari S, Whitehouse CA (2005) Reemergence of monkeypox: prevalence, diagnostics, and countermeasures. Clin Infect Dis 41:1765–1771

    Article  Google Scholar 

  10. Kozlov M (2022) Monkeypox in Africa: the science the world ignored. Nature 607:17–18

    Article  CAS  PubMed  Google Scholar 

  11. McAndrew T, Majumder MS, Lover AA, Venkatramanan S, Bocchini P, Besiroglu T, Codi A, Braun D, Dempsey G, Abbott S (2022) Early human judgment forecasts of human monkeypox, May 2022. Lancet Digit Health 4:e569–e571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem AJ, Wagner CE, Wang L-F (2022) Infectious disease in an era of global change. Nat Rev Microbiol 20:193–205

    Article  CAS  PubMed  Google Scholar 

  13. Jamil H, Tariq W, Tahir MJ, Mahfooz RS, Asghar MS, Ahmed A (2022) Human monkeypox expansion from the endemic to non-endemic regions: control measures. Ann Med Surg 79:104048

    Article  Google Scholar 

  14. Aljabali AAA, Obeid MA, Nusair MB, Hmedat A, Tambuwala MM (2022) Monkeypox virus: an emerging epidemic. Microb Pathog 173:105794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walker M (2022) Monkeypox virus hosts and transmission routes: a systematic review of a zoonotic pathogen

  16. Alakunle E, Moens U, Nchinda G, Okeke MI (2020) Monkeypox virus in Nigeria: infection biology, epidemiology and evolution. Viruses 12:1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Petersen E, Kantele A, Koopmans M, Asogun D, Yinka-Ogunleye A, Ihekweazu C, Zumla, (2019) A human monkeypox: epidemiologic and clinical characteristics, diagnosis, and prevention. Infect Dis Clin 33:1027–1043

    Article  Google Scholar 

  18. Gong Q, Wang C, Chuai X, Chiu S (2022) Monkeypox virus: a re-emergent threat to humans. Virol Sin 37:477–482

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumar N, Acharya A, Gendelman HE, Byrareddy SN (2022) The 2022 outbreak and the pathobiology of the monkeypox virus. J Autoimmun 131:102855

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kmiec D, Kirchhoff F (2022) Monkeypox: a new threat? Int J Mol Sci 23:7866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Luo Q, Han J (2022) Preparedness for a monkeypox outbreak. Infect Med 1:124–134

    Article  Google Scholar 

  22. Rizk JG, Lippi G, Henry BM, Forthal DN (2022) Prevention and treatment of monkeypox. Drugs 82:1–7

    Google Scholar 

  23. Sherwat A, Brooks JT, Birnkrant D, Kim P (2022) Tecovirimat and the treatment of monkeypox—past, present, and future considerations. N Engl J Med 387:579–581

    Article  PubMed  Google Scholar 

  24. Kawai-Noma S, Saeki K, Yumoto T, Minakata K, Saito K, Umeno D (2020) Improvement of the dP-nucleoside-mediated herpes simplex virus thymidine kinase negative-selection system by manipulating dP metabolism genes. J Biosci Bioeng 130:121–127

    Article  CAS  PubMed  Google Scholar 

  25. Moffatt BA (2002) Purine and pyrimidine nucleotide synthesis and metabolism. Arabidopsis Book 1:e0018

    Article  PubMed  PubMed Central  Google Scholar 

  26. Luo EW-C, Liao M-L, Chien C-L (2021) Neural differentiation of glioblastoma cell lines via a herpes simplex virus thymidine kinase/ganciclovir system driven by a glial fibrillary acidic protein promoter. PLoS ONE 16:e0253008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hollenbaugh JA, Gee P, Baker J, Daly MB, Amie SM, Tate J, Kasai N, Kanemura Y, Kim D-H, Ward BM (2013) Host factor SAMHD1 restricts DNA viruses in non-dividing myeloid cells. PLoS Pathog 9:e1003481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA (2010) Human and viral nucleoside/nucleotide kinases involved in antiviral drug activation: structural and catalytic properties. Antivir Res 86:101–120

    Article  CAS  PubMed  Google Scholar 

  29. Hoffmann A, Döring K, Seeger NT, Bühler M, Schacke M, Krumbholz A, Sauerbrei A (2017) Genetic polymorphism of thymidine kinase (TK) and DNA polymerase (pol) of clinical varicella-zoster virus (VZV) isolates collected over three decades. J Clin Virol 95:61–65

    Article  CAS  PubMed  Google Scholar 

  30. Kwofie SK, Annan DG, Adinortey CA, Boison D, Kwarko GB, Abban RA, Adinortey MB (2021) Identification of novel potential inhibitors of varicella-zoster virus thymidine kinase from ethnopharmacologic relevant plants through an in-silico approach. J Biomol Struct Dyn 40:1–16

    Google Scholar 

  31. Karak P (2019) Biological activities of flavonoids: an overview. Int J Pharm Sci Res 10:1567–1574

    CAS  Google Scholar 

  32. Shahrajabian MH, Sun W, Cheng Q (2022) The importance of flavonoids and phytochemicals of medicinal plants with antiviral activities. Mini Rev Org Chem 19:293–318

    Article  CAS  Google Scholar 

  33. Sun Z-G, Li Z-N, Zhang J-M, Hou X-Y, Yeh SM, Ming X (2022) Recent developments of flavonoids with various activities. Curr Top Med Chem 22:305–329

    Article  CAS  PubMed  Google Scholar 

  34. Carpena M, Caleja C, Nuñez-Estevez B, Pereira E, Fraga-Corral M, Reis FS, Simal-Gandara J, Ferreira IC, Prieto MA, Barros L (2021) Flavonoids: a group of potential food additives with beneficial health effects. Nat Food Addit

  35. Dias MC, Pinto DC, Silva AM (2021) Plant flavonoids: chemical characteristics and biological activity. Molecules 26:5377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H (2021) The flavonoid biosynthesis network in plants. Int J Mol Sci 22:12824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ranasinghe C (2022) 3Plant phenolic compounds. In: Napagoda M, Jayasinghe L (eds) Chemistry of natural products: phytochemistry and pharmacognosy of medicinal plants. De Gruyter, Berlin

    Google Scholar 

  38. Badshah SL, Faisal S, Muhammad A, Poulson BG, Emwas AH, Jaremko M (2021) Antiviral activities of flavonoids. Biomed Pharmacother 140:111596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montenegro-Landívar MF, Tapia-Quirós P, Vecino X, Reig M, Valderrama C, Granados M, Cortina JL, Saurina J (2021) Polyphenols and their potential role to Fight viral diseases: an overview. Sci Total Environ 801:149719

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kaul R, Paul P, Kumar S, Büsselberg D, Dwivedi VD, Chaari A (2021) Promising antiviral activities of natural flavonoids against SARS-CoV-2 targets: systematic review. Int J Mol Sci 22:11069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pa S, Chowdhury T, Paria K, Manna S, Parveen S, Singh M, Sharma P, Islam SS, Saadi SMAI, Mandal SM (2022) Brief survey on phytochemicals to prevent COVID-19. J Indian Chem Soc 99:100244

    Article  Google Scholar 

  42. Cai W, Zhang S-L (2022) Anti-inflammatory mechanisms of total flavonoids from Mosla scabra against influenza A virus-induced pneumonia by integrating network pharmacology and experimental verification. Evid-Based Complement Altern Med 2022:1–10

    CAS  Google Scholar 

  43. Schonhofer C, Yi J, Sciorillo A, Andrae-Marobela K, Cochrane A, Harris M, Brumme ZL, Brockman MA, Mounzer K, Hart C (2021) Flavonoid-based inhibition of cyclin-dependent kinase 9 without concomitant inhibition of histone deacetylases durably reinforces HIV latency. Biochem Pharmacol 186:114462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cruz-Arreola O, Orduña-Diaz A, Domínguez F, Reyes-Leyva J, Vallejo-Ruiz V, Domínguez-Ramírez L, Santos-López G (2022) In silico testing of flavonoids as potential inhibitors of protease and helicase domains of dengue and Zika viruses. PeerJ 10:e13650

    Article  PubMed  PubMed Central  Google Scholar 

  45. van de Sand L, Bormann M, Schmitz Y, Heilingloh CS, Witzke O, Krawczyk A (2021) Antiviral active compounds derived from natural sources against herpes simplex viruses. Viruses 13:1386

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sá JM, Piloto JV, Cilli EM, Tasic L, Fossey MA, Almeida FC, Souza FP, Caruso ÍP (2022) Hesperetin targets the hydrophobic pocket of the nucleoprotein/phosphoprotein binding site of human respiratory syncytial virus. J Biomol Struct Dyn 40:2156–2168

    Article  PubMed  Google Scholar 

  47. González-Búrquez MJ, González-Díaz FR, García-Tovar CG, Carrillo-Miranda L, Soto-Zárate CI, Canales-Martínez MM, Penieres-Carrillo JG (2018) Comparison between in vitro antiviral effect of Mexican propolis and three commercial flavonoids against canine distemper virus. Evid Based Complement Alternat Med 2018:7092416

    Article  PubMed  PubMed Central  Google Scholar 

  48. Anda W, Hua Z, Fengfeng X, Zhang M, Huang P, Wenqi Y (2021) Advances in the treatment of hepatitis with flavonoids. Med Plant 12

  49. Ma EZ, Khachemoune A (2022) Flavonoids and their therapeutic applications in skin diseases. Arch Dermatol Res 1–11.

  50. Choi H-J (2022) Antiviral activity of quercetin-3-glucoside against non-polio enterovirus. J Bacteriol Virol 52:20–27

    Article  CAS  Google Scholar 

  51. Šudomová M, Berchová-Bímová K, Mazurakova A, Šamec D, Kubatka P, Hassan ST (2022) Flavonoids target human herpesviruses that infect the nervous system: mechanisms of action and therapeutic insights. Viruses 14:592

    Article  PubMed  PubMed Central  Google Scholar 

  52. Omega C (2021) Clustal omega < multiple sequence alignment < EMBL-EBI.

  53. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ul Haq I, Ijaz S, Khan NA (2021) Genealogical concordance of phylogenetic species recognition-based delimitation of Neopestalotiopsis species associated with leaf spots and fruit canker disease affected guava plants. Pak J Agric Sci 58:4

    Google Scholar 

  55. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    CAS  PubMed  Google Scholar 

  56. Abd SAH, Ali A, Sayed SF, Ali A, Alam P (2022) Multi-epitope-based vaccine candidate for monkeypox: an in silico approach. Vaccines 10:1564

    Article  Google Scholar 

  57. Sahay A, Piprodhe A, Pise M (2020) In silico analysis and homology modeling of strictosidine synthase involved in alkaloid biosynthesis in catharanthus roseus. J Genet Eng Biotechnol 18:44

    Article  PubMed  PubMed Central  Google Scholar 

  58. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumar A, Kumar S, Kumar A, Sharma N, Sharma M, Singh KP, Rathore M, Gajula MP (2018) Homology modeling, molecular docking and molecular dynamics based functional insights into rice urease bound to urea. Proc Natl Acad Sci India 88:1539–1548

    CAS  Google Scholar 

  60. Shehadi IA, Rashdan HR, Abdelmonsef AH (2020) Homology modeling and virtual screening studies of antigen MLAA-42 protein: identification of novel drug candidates against leukemia-an in silico approach. Comput Math Methods Med 2020:1–12

    Article  Google Scholar 

  61. Fiser A, Šali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  PubMed  Google Scholar 

  62. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  63. Hart R, Hickey M, Franks S (2004) Definitions, prevalence and symptoms of polycystic ovaries and polycystic ovary syndrome. Best Pract Res Clin Obstet Gynaecol 18:671–683

    Article  PubMed  Google Scholar 

  64. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Elting MW, Kwee J, Korsen TJ, Rekers-Mombarg LT, Schoemaker J (2003) Aging women with polycystic ovary syndrome who achieve regular menstrual cycles have a smaller follicle cohort than those who continue to have irregular cycles. Fertil Steril 79:1154–1160

    Article  PubMed  Google Scholar 

  66. Apter D (1998) Endocrine and metabolic abnormalities in adolescents with a PCOS-like condition: consequences for adult reproduction. Trends Endocrinol Metab 9:58–61

    Article  CAS  PubMed  Google Scholar 

  67. Laven JS, Mulders AG, Visser JA, Themmen AP, de Jong FH, Fauser BC (2004) Anti-Mullerian hormone serum concentrations in normoovulatory and anovulatory women of reproductive age. J Clin Endocrinol Metab 89:318–323

    Article  CAS  PubMed  Google Scholar 

  68. Bagal A, Borkar T, Ghige T, Kulkarni A, Kumbhar A, Devane GR (2022) Molecular docking-useful tool in drug discovery. Asian J Chem 15:129–132

    Article  Google Scholar 

  69. Susanti NMP, Damayanti S, Kartasasmita RE, Tjahjono DHA (2021) Search for cyclin-dependent kinase 4/6 inhibitors by pharmacophore-based virtual screening, molecular docking, and molecular dynamic simulations. Int J Mol Sci 22:13423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pettersen EF, Goddard TD, Huang CC, Meng EC, Couch GS, Croll TI, Morris JH, Ferrin TE (2021) UCSF ChimeraX: structure visualization for researchers educators, and developers. Protein Sci 30:70–82

    Article  CAS  PubMed  Google Scholar 

  71. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717

    Article  PubMed  PubMed Central  Google Scholar 

  72. Pires DE, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pollastri MP (2010) Overview on the rule of five. Curr Protoc 49:9–12

    Google Scholar 

  74. Veber DF, Johnson SR, Cheng HY, Smith BR, Ward KW, Kopple KD (2002) Molecular properties that influence the oral bioavailability of drug candidates. J Med Chem 45:2615–2623

    Article  CAS  PubMed  Google Scholar 

  75. Egan WJ, Merz KM Jr, Baldwin JJ (2000) Prediction of drug absorption using multivariate statistics. J Med Chem 43:3867–3877

    Article  CAS  PubMed  Google Scholar 

  76. Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria for drug-like chemical matter. J Med Chem 44:1841–1846

    Article  CAS  PubMed  Google Scholar 

  77. Ferreira LL, Andricopulo AD (2019) ADMET modeling approaches in drug discovery. Drug Discov Today 24:1157–1165

    Article  CAS  PubMed  Google Scholar 

  78. Gfeller D, Grosdidier A, Wirth M, Daina A, Michielin O, Zoete V (2014) SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res 42:W32-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dmitriev AV, Filimonov DA (2019) Drug–drug interaction prediction using PASS. SAR QSAR Environ Res 30:655–664

    Article  CAS  PubMed  Google Scholar 

  80. Verma J, Hasan A, Sunil S, Subbarao N (2022) In silico identification and in vitro antiviral validation of potential inhibitors against Chikungunya virus. J Comput Aided Mol Des 36:521–536

    Article  CAS  PubMed  Google Scholar 

  81. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  PubMed  Google Scholar 

  82. Sousa da Silva AW, Vranken WF (2012) ACPYPE-AnteChamber PYthon Parser interface. BMC Res Notes 5:367

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kulke M, Vermaas JV (2022) Reversible unwrapping algorithm for constant-pressure molecular dynamics simulations. J Chem Theory Comput 18:6161–6171

    Article  CAS  PubMed  Google Scholar 

  84. Arshia AH, Shadravan S, Solhjoo A, Sakhteman A, Sami A (2021) De novo design of novel protease inhibitor candidates in the treatment of SARS-CoV-2 using deep learning, docking, and molecular dynamic simulations. Comput Biol Med 139:104967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Manish M, Mishra S, Anand A, Subbarao N (2022) Computational molecular interaction between SARS-CoV-2 main protease and theaflavin digallate using free energy perturbation and molecular dynamics. Comput Biol Med 150:106125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Geourjon C, Deléage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11:681–684

    CAS  PubMed  Google Scholar 

  87. Vutyavanich T, Khaniyao V, Wongtra-ngan S, Sreshthaputra O, Sreshthaputra R, Piromlertamorn W (2007) Clinical, endocrine and ultrasonographic features of polycystic ovary syndrome in Thai women. J Obstet Gynaecol Res 33:677–680

    Article  PubMed  Google Scholar 

  88. Mohamad Rosdi MN, Mohd Arif S, Abu Bakar MH, Razali SA, Mohamed Zulkifli R (2018) Molecular docking studies of bioactive compounds from Annona muricata Linn as potential inhibitors for Bcl-2, Bcl-w and Mcl-1 antiapoptotic proteins. Apoptosis 23:27–40

    Article  CAS  PubMed  Google Scholar 

  89. Ma Y, Tao Y, Qu H, Wang C, Yan F, Gao X, Zhang M (2022) Exploration of plant-derived natural polyphenols toward COVID-19 main protease inhibitors: DFT, molecular docking approach, and molecular dynamics simulations. RSC Adv 12:5357–5368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muhammad S, Maqbool M, Al-Sehemi A, Iqbal A, Khan M, Ullah S, Khan M (2021) A threefold approach including quantum chemical, molecular docking and molecular dynamic studies to explore the natural compounds from Centaurea jacea as the potential inhibitors for COVID-19. Braz J Biol 83:e247604

    Article  CAS  PubMed  Google Scholar 

  91. González-Cortazar M, Salinas-Sánchez DO, Herrera-Ruiz M, Román-Ramos DC, Zamilpa A, Jiménez-Ferrer E, Ble-González EA, Álvarez-Fitz P, Castrejón-Salgado R, Pérez-García MD (2022) Eupatorin and salviandulin-A, with antimicrobial and anti-inflammatory effects from Salvia lavanduloides kunth leaves. Plants 11:1739

    Article  PubMed  PubMed Central  Google Scholar 

  92. Lee K, Hyun Lee D, Jung YJ, Shin SY, Lee YH (2016) The natural flavone eupatorin induces cell cycle arrest at the G2/M phase and apoptosis in HeLa cells. Appl Biol Chem 59:193–199

    Article  CAS  Google Scholar 

  93. Adhikari B, Marasini BP, Rayamajhee B, Bhattarai BR, Lamichhane G, Khadayat K, Adhikari A, Khanal S, Parajuli N (2021) Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: a review. Phytother Res 35:1298–1312

    Article  CAS  PubMed  Google Scholar 

  94. Jasso-Miranda C, Herrera-Camacho I, Flores-Mendoza LK, Dominguez F, Vallejo-Ruiz V, Sanchez-Burgos GG, Pando-Robles V, Santos-Lopez G, Reyes-Leyva J (2019) Antiviral and immunomodulatory effects of polyphenols on macrophages infected with dengue virus serotypes 2 and 3 enhanced or not with antibodies. Infect Drug Resist 12:1833–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lani R, Hassandarvish P, Shu MH, Phoon WH, Chu JJ, Higgs S, Vanlandingham D, Abu Bakar S, Zandi K (2016) Antiviral activity of selected flavonoids against Chikungunya virus. Antiviral Res 133:50–61

    Article  CAS  PubMed  Google Scholar 

  96. Ghildiyal R, Prakash V, Chaudhary V, Gupta V, Gabrani R (2020) Phytochemicals as antiviral agents: recent updates. Plant-derived bioactives. Springer, Singapore

    Google Scholar 

  97. Lin YJ, Chang YC, Hsiao NW, Hsieh JL, Wang CY, Kung SH, Tsai FJ, Lan YC, Lin CW (2012) Fisetin and rutin as 3C protease inhibitors of enterovirus A71. J Virol Methods 182:93–98

    Article  CAS  PubMed  Google Scholar 

  98. Kang SY, Kang JY, Oh MJ (2012) Antiviral activities of flavonoids isolated from the bark of Rhus verniciflua stokes against fish pathogenic viruses In Vitro. J Microbiol 50:293–300

    Article  CAS  PubMed  Google Scholar 

  99. Lyu SY, Rhim JY, Park WB (2005) Antiherpetic activities of flavonoids against herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) in vitro. Arch Pharm Res 28:1293–1301

    Article  CAS  PubMed  Google Scholar 

  100. Medeiros DL, Lima ETG (2022) Rhamnetin: a review of its pharmacology and toxicity. J Pharm Pharmacol 74:793–799

    Article  PubMed  Google Scholar 

  101. Wang M, Wu Y, Li W (2021) Rhamnetin ameliorates macrophage-mediated inflammation and pro-atherosclerosis pathways in apolipoprotein E-deficient mice. J Physiol Pharmacol 72:10–26402

    Google Scholar 

  102. Zhang W, Li B, Guo Y, Bai Y, Wang T, Fu K, Sun G (2015) Rhamnetin attenuates cognitive deficit and inhibits hippocampal inflammatory response and oxidative stress in rats with traumatic brain injury. Cent Eur J Immunol 40:35–41

    Article  PubMed  PubMed Central  Google Scholar 

  103. Zhou J, Huang J (2020) Current findings regarding natural components with potential anti-2019-nCoV activity. Front Cell Dev Biol 8:589

    Article  PubMed  PubMed Central  Google Scholar 

  104. Liu Y, Jing YY, Zeng CY, Li CG, Xu LH, Yan L, Bai WJ, Zha QB, Ouyang DY, He XH (2017) Scutellarein suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Front Pharmacol 8:975

    Article  PubMed  Google Scholar 

  105. Hou L, Chen L, Fang L (2017) Scutellarein inhibits proliferation, invasion, and tumorigenicity in human breast cancer cells by regulating HIPPO-YAP signaling pathway. Med Sci Monit 23:5130–5138

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen X, Cui L, Duan X, Ma B, Zhong D (2006) Pharmacokinetics and metabolism of the flavonoid Scutellarein in humans after a single oral administration. Drug Metab Dispos 34:1345–1352

    Article  CAS  PubMed  Google Scholar 

  107. Imran M, Iqbal S, Hussain A, Uddin J, Shahzad M, Khaliq T, Ahmed AR, Mushtaq M, Mahmood K (2022) In silico screening, SAR and kinetic studies of naturally occurring flavonoids against SARS CoV-2 main protease. Arab J Chem 15:103

    Article  Google Scholar 

  108. Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA (2022) Antibacterial effects of flavonoids and their structure–activity: relationship study: a comparative interpretation. Molecules 17:1149

    Article  Google Scholar 

  109. Chenafa H, Mesli F, Daoud I, Achiri R, Ghalem S, Neghr A (2022) In silico design of enzyme α-amylase and α-glucosidase inhibitors using molecular docking, molecular dynamic, conceptual DFT investigation and pharmacophore modeling. J Biomol Struct Dyn 40:6308–6329

    Article  CAS  PubMed  Google Scholar 

  110. Bhat SA, Siddiqui ZI, Parray ZA, Sultan A, Afroz M, Azam SA, Farooqui SR (2022) Naturally occurring HMGB1 inhibitor delineating the anti-hepatitis B virus mechanism of glycyrrhizin via in vitro and in silico studies. J Mol Liq 356:119029

    Article  Google Scholar 

  111. Ibrahim MAA, Abdelrahman AHM, Mohamed DEM, Abdeljawaad KAA, Naeem MA, Gabr GA, Shawky AM, Soliman MES, Sidhom PA, Pare PW, Hegazy MEF (2023) Chetomin, a SARS-CoV-2 3C-like protease (3CLpro) inhibitor in silico screening, enzyme docking, molecular dynamics and pharmacokinetics analysis. Viruses 15:250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Daina A, Zoete V (2016) A BOILED-Egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 11:1117–1121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Goel RK, Singh D, Lagunin A, Poroikov V (2011) PASS-assisted exploration of new therapeutic potential of natural products. Med Chem Res 20:1509–1514

    Article  CAS  Google Scholar 

  114. Liao SY, Mo GQ, Chen JC, Zheng KC (2014) Exploration of the binding mode between (−)-zampanolide and tubulin using docking and molecular dynamics simulation. J Mol Model 20:1–9

    Article  CAS  Google Scholar 

  115. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42:623–628

    Article  CAS  Google Scholar 

  116. Chaudhari SK, Arshad S, Amjad MS, Akhtar MS (2019) Natural compounds extracted from medicinal plants and their applications. Natural bio-active compounds: volume 1: production and applications. pp 193–207

Download references

Acknowledgements

We are grateful to Clinical Biochemistry Research Center, Basic Health Sciences Institute; Shahrekord University of Medical Sciences for supporting this work by grant code 3961.

Author information

Authors and Affiliations

Authors

Contributions

Tooba Abdizadeh wrote the main manuscript text and prepared figures and reviewed the manuscript.

Corresponding author

Correspondence to Tooba Abdizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any study with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 18438 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdizadeh, T. Identification of novel potential inhibitors of monkeypox virus thymidine kinase using molecular docking, molecular dynamics simulation and MM/PBSA methods. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10692-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10692-w

Keywords

Navigation