Skip to main content

Advertisement

Log in

Design, synthesis, and evaluation of 2,2’-bipyridyl derivatives as bifunctional agents against Alzheimer’s disease

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a complex multifactorial neurodegenerative disease. Metal ion dyshomeostasis and Aβ aggregation have been proposed to contribute to AD progression. Metal ions can bind to Aβ and promote Aβ aggregation, and ultimately lead to neuronal death. Bifunctional (metal chelation and Aβ interaction) compounds are showing promise against AD. In this work, eleven new 3,3’-diamino-2,2’-bipyridine derivatives 4a-4k were synthesized, and evaluated as bifunctional agents for AD treatment. In vitro Aβ aggregation inhibition assay confirmed that most of the synthesized compounds exhibited significant self-induced Aβ1−42 aggregation inhibition. Among them, compound 4d displayed the best inhibitory potency of self-induced Aβ1−42 aggregation with IC50 value of 9.4 µM, and it could selectively chelate with Cu2+ and exhibited 66.2% inhibition of Cu2+-induced Aβ1−42 aggregation. Meanwhile, compound 4d showed strong neuroprotective activity against Aβ1−42 and Cu2+-treated Aβ1−42 induced cell damage. Moreover, compound 4d in high dose significantly reversed Aβ-induced memory impairment in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang XQ, Xia CL, Chen SB, Tan JH, Ou TM, Huang SL, Li D, Gu LQ, Huang ZS (2015) Design, synthesis, and biological evaluation of 2-arylethenylquinoline derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Eur J Med Chem 89:349–361. https://doi.org/10.1016/j.ejmech.2014.10.018

    Article  CAS  PubMed  Google Scholar 

  2. Alzheimer’s Association (2020) 2020 Alzheimer’s disease facts and figures. Alzheimers & Dement 16:391–460. https://doi.org/10.1002/alz.12068

    Article  Google Scholar 

  3. Wang XQ, Zhou LY, Tan RX, Liang GP, Fang SX, Li W, Xie M, Wen YH, Wu JQ, Chen YP (2021) Design, synthesis, and evaluation of chalcone derivatives as multifunctional agents against Alzheimer’s disease. Chem Biodivers 18:e2100341. https://doi.org/10.1002/cbdv.202100341

    Article  CAS  PubMed  Google Scholar 

  4. World Alzheimer Report (2021) https://www.alzint.org/u/World-Alzheimer-Report-2021.pdf. Accessed 21 Sept 2021

  5. Kang YJ, Diep YN, Tran M, Cho H (2020) Therapeutic targeting strategies for early- to late-staged Alzheimer’s disease. Int J Mol Sci 21:9591. https://doi.org/10.3390/ijms21249591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Verma A, Waiker DK, Bhardwaj B, Saraf P, Shrivastava SK (2022) The molecular mechanism, targets, and novel molecules in the treatment of Alzheimer’s disease. Bioorg Chem 119:105562. https://doi.org/10.1016/j.bioorg.2021.105562

    Article  CAS  PubMed  Google Scholar 

  7. Zhang F, Zhong RJ, Cheng C, Li S, Le WD (2020) New therapeutics beyond amyloid-beta and tau for the treatment of Alzheimer’s disease. Acta Pharmacol Sin 42:1382–1389. https://doi.org/10.1038/s41401-020-00565-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Carreiras MC, Mendes E, Perry MJ, Francisco AP, Marco-Contelles J (2013) The multifactorial nature of Alzheimer’s disease for developing potential therapeutics. Curr Top Med Chem 13:1745–1770. https://doi.org/10.2174/15680266113139990135

    Article  CAS  PubMed  Google Scholar 

  9. Echeverria V, Yarkov A, Aliev G (2016) Positive modulators of the alpha7 nicotinic receptor against neuroinflammation and cognitive impairment in Alzheimer’s disease. Prog Neurobiol 144:142–157. https://doi.org/10.1016/j.pneurobio.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  10. Heneka MT, Carson MJ, Khoury EI, Kummer J, Landreth MP, Brosseron GE, Feinstein F, Jacobs DL, Wyss-Coray AH, Vitorica T J, et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405. https://doi.org/10.1016/S1474-4422(15)70016-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koca M, Bilginer S (2022) New benzamide derivatives and their nicotinamide/cinnamamide analogs as cholinesterase inhibitors. Mol Divers 26:1201–1212. https://doi.org/10.1007/s11030-021-10249-9

    Article  CAS  PubMed  Google Scholar 

  12. Ozturk O, Farouk FM, Ooi L, Law CSW, Muhammed MT, Aki-Yalcin E, Yeong KY (2022) Synthesis of novel carboxamide- and carbohydrazide-benzimidazoles as selective butyrylcholinesterase inhibitors. Mol Divers 26(5):2863–2876. https://doi.org/10.1007/s11030-022-10476-8

    Article  CAS  PubMed  Google Scholar 

  13. Ayton S, Bush AI (2021) β-amyloid: the known unknowns. Ageing Res Rev 65:101212. https://doi.org/10.1016/j.arr.2020.101212

    Article  CAS  PubMed  Google Scholar 

  14. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608. https://doi.org/10.15252/emmm.201606210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun X, Chen WD, Wang YD (2015) β-Amyloid: the key peptide in the pathogenesis of Alzheimer’s disease. Front Pharmacol 6:221. https://doi.org/10.3389/fphar.2015.00221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Araki W, Kametani F (2022) Protection against amyloid-β oligomer neurotoxicity by small molecules with antioxidative properties: potential for the prevention of Alzheimer’s disease dementia. Antioxidants 11(1):132. https://doi.org/10.3390/antiox11010132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cline EN, Bicca MA, Viola KL, Klein WL (2018) The amyloid-β oligomer hypothesis: beginning of the third decade. J Alzheimer’s Dis 64:S567–S610. https://doi.org/10.3233/JAD-179941

    Article  CAS  Google Scholar 

  18. Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ (2018) Amyloid toxicity in Alzheimer’s disease. Rev Neurosci 29(6):613–627. https://doi.org/10.1515/revneuro-2017-0063

    Article  CAS  PubMed  Google Scholar 

  19. Tanokashira D, Mamada N, Yamamoto F, Taniguchi K, Tamaoka A, Lakshmana MK, Araki W (2017) The neurotoxicity of amyloid β-protein oligomers is reversible in a primary neuron model. Mol Brain 10:4. https://doi.org/10.1186/s13041-016-0284-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sheikh AM, Michikawa M, Kim SU, Nagai A (2015) Lysophosphatidylcholine increases the neurotoxicity of Alzheimer’s amyloid β1–42 peptide: role of oligomer formation. Neuroscience 292:159–169. https://doi.org/10.1016/j.neuroscience.2015.02.034

    Article  CAS  PubMed  Google Scholar 

  21. Yakupova EI, Bobyleva LG, Shumeyko SA, Vikhlyantsev IM, Bobylev AG (2021) Amyloids: the history of toxicity and functionality. Biology 10:394. https://doi.org/10.3390/biology10050394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharma AK, Pavlova ST, Kim J, Finkelstein D, Hawco NJ, Rath NP, Kim J, Mirica LM (2012) Bifunctional compounds for controlling metal-mediated aggregation of the Aβ42 peptide. J Am Chem Soc 134:6625–6636. https://doi.org/10.1021/ja210588m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Faller P, Hureau C, Berthoumieu O (2013) Role of metal ions in the self-assembly of the Alzheimer’s amyloid-β peptide. Inorg Chem 52:12193–12206. https://doi.org/10.1021/ic4003059

    Article  CAS  PubMed  Google Scholar 

  24. Fasae KD, Abolaji AO, Faloye TR, Odunsi AY, Oyetayo BO, Enya JI, Rotimi JA, Akinyemi RO, Whitworth AJ, Aschner M (2021) Metallobiology and therapeutic chelation of biometals (copper, zinc and iron) in Alzheimer’s disease: limitations, and current and future perspectives. J Trace Elem Med Biol 67:126779. https://doi.org/10.1016/j.jtemb.2021.126779

    Article  CAS  PubMed  Google Scholar 

  25. Rana M, Sharma AK (2019) Cu and Zn interactions with Aβ peptides: consequence of coordination on aggregation and formation of neurotoxic soluble Aβ oligomers. Metallomics 11(1):64–84. https://doi.org/10.1039/c8mt00203g

    Article  CAS  PubMed  Google Scholar 

  26. Peters DG, Connor JR, Meadowcroft MD (2015) The relationship between iron dyshomeostasis and amyloidogenesis in Alzheimer’s disease: two sides of the same coin. Neurobiol Dis 81:49–65. https://doi.org/10.1016/j.nbd.2015.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bush AI (2008) Drug development based on the metals hypothesis of Alzheimer’s disease. J Alzheimers Dis 15(2):223–240. https://doi.org/10.3233/jad-2008-15208

    Article  CAS  PubMed  Google Scholar 

  28. Ramesh M, Govindaraju T (2022) Multipronged diagnostic and therapeutic strategies for Alzheimer’s disease. Chem Sci 13:13657–13689. https://doi.org/10.1039/d2sc03932j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Savelieff MG, Liu Y, Senthamarai RRP, Korshavn KJ, Lee HJ, Ramamoorthy A, Lim MH (2014) A small molecule that displays marked reactivity toward copper-versus zinc-amyloid-β implicated in Alzheimer’s disease. Chem Commun 50(40):5301–5303. https://doi.org/10.1039/c3cc48473d

    Article  CAS  Google Scholar 

  30. Yi Y, Lin Y, Han J, Lee HJ, Park N, Nam G, Park YS, Lee YH, Lim MH (2020) Impact of sphingosine and acetylsphingosines on the aggregation and toxicity of metal-free and metal-treated amyloid-β. Chem Sci 12(7):2456–2466. https://doi.org/10.1039/d0sc04366d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Puentes-Díaz N, Chaparro D, Morales-Morales D, Flores-Gaspar A, Alí-Torres J (2023) Role of metal cations of copper, Iron, and aluminum and multifunctional ligands in Alzheimer’s disease: experimental and computational insights. ACS Omega 8:4508–4526. https://doi.org/10.1021/acsomega.2c06939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jones MR, Mathieu E, Dyrager C, Faissner S, Vaillancourt Z, Korshavn KJ, Lim MH, Ramamoorthy A, Yong VW, Tsutsui S, Stys PK, Storr T (2017) Multi-target-directed phenol–triazole ligands as therapeutic agents for Alzheimer’s disease. Chem Sci 8:5636–5643. https://doi.org/10.1039/c7sc01269a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rana M, Cho HJ, Arya H, Bhatt TK, Bhar K, Bhatt S, Mirica LM, Sharma AK (2022) Azo-stilbene and pyridine-amine hybrid multifunctional molecules to target metal-mediated neurotoxicity and amyloid–β aggregation in Alzheimer’s disease. Inorg Chem 61:10294–10309. https://doi.org/10.1021/acs.inorgchem.2c00502

    Article  CAS  PubMed  Google Scholar 

  34. Elkina NA, Grishchenko MV, Shchegolkov EV, Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Radchenko EV, Palyulin VA, Zhilina EF, Perminova AN, Lapshin LS, Burgart YV, Saloutin VI, Richardson RJ (2022) New multifunctional agents for potential Alzheimer’s disease treatment based on tacrine conjugates with 2-arylhydrazinylidene-1,3-diketones. Biomolecules 12(11):1551. https://doi.org/10.3390/biom12111551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun L, Cho HJ, Sen S, Arango AS, Huynh TT, Huang Y, Bandara N, Rogers BE, Tajkhorshid E, Mirica LM (2021) Amphiphilic distyrylbenzene derivatives as potential therapeutic and imaging agents for soluble and insoluble amyloid β aggregates in Alzheimer’s disease. J Am Chem Soc 143:10462–10476. https://doi.org/10.1021/jacs.1c05470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krasnovskaya O, Kononova A, Erofeev A, Gorelkin P, Majouga A, Beloglazkina E (2023) Aβ-targeting bifunctional chelators (BFCs) for potential therapeutic and PET imaging applications. Int J Mol Sci 24:236. https://doi.org/10.3390/ijms24010236

    Article  CAS  Google Scholar 

  37. Terpstra K, Wang Y, Huynh TT, Bandara N, Cho HJ, Rogers BE, Mirica LM (2022) Divalent 2–(4-Hydroxyphenyl)benzothiazole bifunctional chelators for 64Cu positron emission tomography imaging in Alzheimer’s disease. Inorg Chem 61:20326–20336. https://doi.org/10.1021/acs.inorgchem.2c02740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Huynh TT, Bandara N, Cho HJ, Rogers BE, Mirica LM (2022) 2-(4-Hydroxyphenyl)- benzothiazole dicarboxylate ester TACN chelators for 64Cu PET imaging in Alzheimer’s disease. Dalton Trans 51:1216–1224. https://doi.org/10.1039/d1dt02767k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim G, Lelong E, Kang J, Suh JM, Bris NL, Bernard H, Kim D, Tripier R, Lim MH (2022) Reactivities of cyclam derivatives with metal–amyloid-β. Inorg Chem Front 7:4222–4238. https://doi.org/10.1039/d0qi00791a

    Article  CAS  Google Scholar 

  40. Liu YZ, Kochi A, Pithadia AS, Lee S, Nam Y, Beck MW, He XM, Lee DK, Lim MH (2013) Tuning reactivity of diphenylpropynone derivatives with metal-associated amyloid–β species via structural modifications. Inorg Chem 52(14):8121–8130. https://doi.org/10.1021/ic400851w

    Article  CAS  PubMed  Google Scholar 

  41. Pithadia AS, Kochi A, Soper MT, Beck MW, Liu Y, Lee S, DeToma AS, Ruotolo BT, Lim MH (2012) Reactivity of diphenylpropynone derivatives toward metal-associated amyloid-β species. Inorg Chem 51:12959–12967. https://doi.org/10.1021/ic302084g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun L, Sharma AK, Han BH, Mirica LM (2020) Amentoflavone: a bifunctional metal chelator that controls the formation of neurotoxic soluble Aβ42 oligomers. ACS Chem Neurosci 11(17):2741–2752. https://doi.org/10.1021/acschemneuro.0c00376

    Article  CAS  PubMed  Google Scholar 

  43. Li GY, Sun LL, Ji LN, Chao H (2016) Ruthenium (II) complexes with dppz: from molecular photoswitch to biological applications. Dalton Trans 45(34):13261–13276. https://doi.org/10.1039/c6dt01624c

    Article  CAS  PubMed  Google Scholar 

  44. Vyas NA, Ramteke SN, Kumbhar AS, Kulkarni PP, Jani V, Sonawane UB, Joshi RR, Joshi B, Erxleben A (2016) Ruthenium(II) polypyridyl complexes with hydrophobic ancillary ligand as Aβ aggregation inhibitors. Eur J Med Chem 121:793–802. https://doi.org/10.1016/j.ejmech.2016.06.038

    Article  CAS  PubMed  Google Scholar 

  45. Ji Y, Lee HJ, Kim M, Nam G, Lee SJC, Cho J, Park CM, Lim MH (2017) Strategic design of 2,2’-bipyridine derivatives to modulate metal-amyloid–β aggregation. Inorg Chem 56:6695–6705. https://doi.org/10.1021/acs.inorgchem.7b00782

    Article  CAS  PubMed  Google Scholar 

  46. Padhi D, Balachandra C, Ramesh M, Govindaraju T (2022) Multifunctional molecules with a bipyridyl core ameliorate multifaceted amyloid toxicity. Chem Commun 58(43):6288–6291. https://doi.org/10.1039/d2cc01168a

    Article  CAS  Google Scholar 

  47. Totta X, Papadopoulou AA, Hatzidimitriou AG, Papadopoulos A, Psomas G (2015) Synthesis, structure and biological activity of nickel(II) complexes with mefenamato and nitrogen-donor ligands. J Inorg Biochem 145:79–93. https://doi.org/10.1016/j.jinorgbio.2015.01.009

    Article  CAS  PubMed  Google Scholar 

  48. Boulsourani Z, Katsamakas S, Geromichalos GD, Psycharis V, Raptopoulou CP, Hadjipavlou-Litina D, Yiannaki E, Dendrinou-Samara C (2017) Synthesis, structure elucidation and biological evaluation of triple bridged dinuclear copper(II) complexes as anticancer and antioxidant/ anti-inflammatory agents. Mater Sci Eng C Mater Biol Appl 76:1026–1040. https://doi.org/10.1016/j.msec.2017.03.157

    Article  CAS  PubMed  Google Scholar 

  49. Lee SJC, Nam E, Lee HJ, Savelieff MG, Lim MH (2017) Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem Soc Rev 46:310–323. https://doi.org/10.1039/c6cs00731g

    Article  CAS  PubMed  Google Scholar 

  50. Kapková P, Alptüzün V, Frey P, Erciyas E, Holzgrabe U (2006) Search for dual function inhibitors for Alzheimer’s disease: synthesis and biological activity of acetylcholinesterase inhibitors of pyridinium-type and their abeta fibril formation inhibition capacity. Bioorg Med Chem 14:472–478. https://doi.org/10.1016/j.bmc.2005.08.034

    Article  CAS  PubMed  Google Scholar 

  51. DeToma AS, Krishnamoorthy J, Nam Y, Lee HJ, Brender JR, Kochi A, Lee D, Onnis V, Congiu C, Manfredini S, Vertuani S, Balboni G, Ramamoorthy A, Lim MH (2014) Interaction and reactivity of synthetic aminoisoflavones with metal-free and metal-associated amyloid-β. Chem Sci 5:4851–4862. https://doi.org/10.1039/c4sc01531b

    Article  CAS  PubMed  Google Scholar 

  52. Rice CR, Onions S, Vidal N, Wallis JD, Senna MC, Pilkington M, Stoeckli-Evans H (2002) The coordination chemistry of 3,3’-Diamino-2,2’-bipyridine and its dication: exploring the role of the amino groups by X-ray crystallography. Eur J Inorg Chem 8:1985–1997. https://doi.org/10.1002/1099-0682(200208)2002:83.0.CO;2-G

    Article  Google Scholar 

  53. Rastegari A, Safavi M, Vafadarnejad F, Najafi Z, Hariri R, Bukhari SNA, Iraji A, Edraki N, Firuzi O, Saeedi M, Mahdavi M, Akbarzadeh T (2022) Synthesis and evaluation of novel arylisoxazoles linked to tacrine moiety: in vitro and in vivo biological activities against Alzheimer’s disease. Mol Divers 26(1):409–428. https://doi.org/10.1007/s11030-021-10248-w

    Article  CAS  PubMed  Google Scholar 

  54. Wang XQ, Zhao CP, Zhong LC, Zhu DL, Mai DH, Liang MG, He MH (2018) Preparation of 4-flexible amino-2-arylethenyl-quinoline derivatives as Multi-target agents for the treatment of Alzheimer’s disease. Molecules 23(12):3100. https://doi.org/10.3390/molecules23123100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen Y, Su C, Wang L, Qin J, Wei S, Tang H (2019) Hybrids of oxoisoaporphine- tetrahydroisoquinoline: novel multi–target inhibitors of inflammation and amyloid-β aggregation in Alzheimer’s disease. Mol Divers 23(3):709–722. https://doi.org/10.1007/s11030-018-9905-5

    Article  CAS  PubMed  Google Scholar 

  56. Wu T, Lin D, Cheng Y, Jiang S, Riaz MW, Fu N, Mou C, Ye M, Zheng Y (2022) Amyloid cascade hypothesis for the treatment of alzheimer’s disease: progress and challenges. Aging Dis 13(6):1745–1758. https://doi.org/10.14336/AD.2022.0412

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cao YY, Wang L, Ge H, Lu XL, Pei Z, Gu Q, Xu J (2013) Salvianolic acid A, a polyphenolic derivative from Salvia miltiorrhiza bunge, as a multifunctional agent for the treatment of Alzheimer’s disease. Mol Divers 17(3):515–524. https://doi.org/10.1007/s11030-013-9452-z

    Article  CAS  PubMed  Google Scholar 

  58. Alali S, Riazi G, Ashrafi-Kooshk MR, Meknatkhah S, Ahmadian S, Hooshyari Ardakani M, Hosseinkhani B (2021) Cannabidiol inhibits tau aggregation in Vitro. Cells 10:3521. https://doi.org/10.3390/cells10123521

    Article  CAS  PubMed  Google Scholar 

  59. Wu L, Feng X, Li T, Sun B, Khan MZ, He L (2017) Risperidone ameliorated Aβ1–42-induced cognitive and hippocampal synaptic impairments in mice. Behav Brain Res 322(Pt A):145–156. https://doi.org/10.1016/j.bbr.2017.01.020

    Article  CAS  PubMed  Google Scholar 

  60. Lee HJ, Kerr RA, Korshavn KJ, Lee J, Kang J, Ramamoorthy A, Ruotolo BT, Lim MH (2016) Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-β aggregation. Inorg Chem Front 3:381–392. https://doi.org/10.1039/c5qi00219b

    Article  CAS  Google Scholar 

  61. Shen L, Yan M, He L (2016) D5 receptor agonist 027075 promotes cognitive function recovery and neurogenesis in a Aβ1–42-induced mouse model. Neuropharmacology 105:72–83. https://doi.org/10.1016/j.neuropharm.2016.01.008

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the research funds of the Doctoral Program of Guangdong Medical University (B2017011), the National Natural Science Foundation of China (21502025), and the research funds of the Students’ Innovative Program of Guangdong Province (202110571029, 202110571048) for financial support of this study.

Funding

This study was supported by the Students' Innovative Program of Guangdong Province (Grant Nos. 202110571029, 202110571048); National Natural Science Foundation of China (Grant No. 21502025), The Doctoral Program of Guangdong Medical University (Grant No. B2017011).

Author information

Authors and Affiliations

Authors

Contributions

X-QW conceptualized the project and prepared the manuscript. R-XT performed the synthesis experiments, collected data and analyzed the data; W-HL, J-MP and S-MZ performed the synthesis experiments; J-ZD, X-YH and L-YZ performed the biological studies. J-QW performed the structure identification. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Xiao-Qin Wang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4179 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, RX., Li, WH., Pang, JM. et al. Design, synthesis, and evaluation of 2,2’-bipyridyl derivatives as bifunctional agents against Alzheimer’s disease. Mol Divers (2023). https://doi.org/10.1007/s11030-023-10651-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10651-5

Keywords

Navigation