Skip to main content
Log in

Synthesis, antifungal activity and mechanism of action of novel chalcone derivatives containing 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A series of chalcone derivatives containing 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole was designed and synthesized. Structures of all compounds were characterized by 1H NMR, 13C NMR, 19F NMR, and HRMS. The biological activities of the compounds were determined with the mycelial growth rate method, and further studies showed that some compounds had good antifungal activities at the concentration of 100 μg/mL. The EC50 value of compound L31 was 15.9 μg/mL against Phomopsis sp., which were better than that of azoxystrobin (EC50 value was 69.4 μg/mL). In addition, the mechanism of action of compound L31 shown that compound can affect mycelial growth by disrupting membrane integrity against Phomopsis sp., and that the higher the concentration of the compound is, the greater the disruption of membrane integrity is.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chandrasekaran M, Thangavelu B, Chun SC, Sathiyabama M (2016) Proteases from phytopathogenic fungi and their importance in phytopathogenicity. J Gen Plant Pathol 82:233–239. https://doi.org/10.1007/s10327-016-0672-9

    Article  CAS  Google Scholar 

  2. Zhou Q, Tang XM, Chen S, Zhan WL, Hu D, Zhou R, Sun N, Wu YJ, Xue W (2022) Design, synthesis, and antifungal activity of novel chalcone derivatives containing a Piperazine fragment. J Agric Food Chem 70(4):1029–1036. https://doi.org/10.1021/acs.jafc.1c05933

    Article  CAS  PubMed  Google Scholar 

  3. Wu WN, Chen MH, Wang R, Tu HT, Yang MF, Ouyang GP (2019) Novel pyrimidine derivatives containing an amide moiety: design, synthesis, and antifungal activity. Chem Pap 73:719–729. https://doi.org/10.1007/s11696-018-0583-7

    Article  CAS  Google Scholar 

  4. Tang XM, Zhou Q, Zhan WL, Hu D, Zhou R, Sun N, Chen S, Wu WN, Xue W (2022) Synthesis of novel antibacterial and antifungal quinoxaline derivatives. RSC Adv 12:2399–2407. https://doi.org/10.1039/D1RA07559D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen L, Zhao P, Fan ZJ, Hu MX, Li Q, Hu WH, Li JW, Zhang JL (2019) Discovery of novel isothiazole, 1,2,3-thiadiazole, and thiazole-Based cinnamamides as fungicidal candidates. J Agric Food Chem 67:12357–12365. https://doi.org/10.1021/acs.jafc.9b03891

    Article  CAS  PubMed  Google Scholar 

  6. Horbach R, Navarro-Quesada AR, Knogge W, Deising HB (2011) When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J Plant Physiol 168:51–62. https://doi.org/10.1016/j.jplph.2010.06.014

    Article  CAS  PubMed  Google Scholar 

  7. Cui ZM, Zhou BH, Fu C, Chen L, Fu J, Cao FJ, Yang XJ, Zhou L (2020) Simple analogues of quaternary benzo[c]phenanthridine alkaloids: discovery of a novel antifungal 2-phenylphthalazin-2-ium scaffold with excellent potency against phytopathogenic fungi. J Agric Food Chem 68:15418–15427. https://doi.org/10.1021/acs.jafc.0c06507

    Article  CAS  PubMed  Google Scholar 

  8. Rodrigues ET, Alpendurada MF, Guimarães A, Avó R, Ferreira B, Pardal MA (2019) The environmental condition of an estuarine ecosystemdisturbed by pesticides. Environ Sci Pollut Res 26:125–136. https://doi.org/10.1007/s11030-020-10163-6

    Article  CAS  Google Scholar 

  9. Fan LL, Luo ZF, Yang CF, Guo B, Miao J, Chen Y, Tang L, Li Y (2022) Design and synthesis of small molecular 2-aminobenzoxazoles as potential antifungal agents against phytopathogenic fungi. Mol Divers 26:981–992. https://doi.org/10.1007/s11030-021-10213-7

    Article  CAS  PubMed  Google Scholar 

  10. Fan ZJ, Shi J, Bao XP (2018) Synthesis and antimicrobial evaluation of novel 1,2,4-triazole thioether derivatives bearing a quinazoline moiety. Mol Divers 22:657–667. https://doi.org/10.1007/s11030-018-9821-8

    Article  CAS  PubMed  Google Scholar 

  11. Chen LW, Hao YK, Song HJ, Liu YX, Li YQ, Zhang JJ (2020) Design, synthesis, characterization, and biological activities of novel spirooxindole analogues containing hydantoin, thiohydantoin, urea, and thiourea moieties. J Agric Food Chem 68:10618–10625. https://doi.org/10.1021/acs.jafc.0c04488

    Article  CAS  PubMed  Google Scholar 

  12. Yang DY, Wang HX, Fan ZJ, Li ZM, Zhou S, Hao ZS, Lv Y, Kalinina TA, Glukhareva TV (2021) Design, synthesis and antifungal activity of (E)-3-acyl-5-(methoxyimino)-1,5-dihydrobenzo[e] [1,2]oxazepin-4(3H)-one analogues. Mol Divers 25:159–169. https://doi.org/10.1007/s11030-020-10035-z

    Article  CAS  PubMed  Google Scholar 

  13. Jiang SC, Tang X, Chen M, He J, Su SJ, Liu LW, He M, Xue W (2019) Design, synthesis and antibacterial activities against Xanthomonas oryzae pv. oryzae, Xanthomonas axonopodis pv. Citri and Ralstonia solanacearum of novel myricetin derivatives containing sulfonamide moiety. Pest Manag Sci 76:853–860. https://doi.org/10.1002/ps.5587

    Article  CAS  PubMed  Google Scholar 

  14. Wang W, Zhang S, Wang JH, Wu FR, Wang T, Xu G (2021) Bioactivity-guided synthesis accelerates the discovery of 3-(Iso)quinolinyl-4-chromenones as potent fungicide candidates. J Agric Food Chem 69:491–500. https://doi.org/10.1021/acs.jafc.0c06700

    Article  CAS  PubMed  Google Scholar 

  15. Afshari K, Haddadi NS, Haj-Mirzaian A, Farzaei MH, Rohani MM, Akramian F, Naseri R, Sureda A, Ghanaatian N, Abdolghaffari AH (2019) Natural flavonoids for the prevention of colon cancer: a comprehensive review of preclinical and clinical studies. J Cell Physiol 234:21519–21546. https://doi.org/10.1002/jcp.28777

    Article  CAS  PubMed  Google Scholar 

  16. Neveux S, Smith NK, Roche A, Blough BE, Pathmasiri W, Coffin AB (2017) Natural compounds as occult ototoxins? Ginkgo biloba flavonoids moderately damage lateral line hair cells. J Assoc Res Otolaryngol 18:275–289. https://doi.org/10.1007/s10162-016-0604-6

    Article  PubMed  Google Scholar 

  17. Stobdan T, Targais K, Lamo D, Srivastava RB (2013) Judicious use of natural resources: a case study of traditional uses of Seabuckthorn (Hippophae rhamnoides L.) in trans-Himalayan Ladakh. India Natl Acad Sci Lett 36:609–613. https://doi.org/10.1007/s40009-013-0177-4

    Article  CAS  Google Scholar 

  18. Jin YS (2019) Recent advances in natural antifungal flavonoids and their derivatives. Bioorg Med Chem Lett 29:126589. https://doi.org/10.1016/j.bmcl.2019.07.048

    Article  CAS  PubMed  Google Scholar 

  19. Mellado M, Espinoza L, Madrid A, Mella J, Chávez-Weisser E, Diaz K, Cuellar M (2022) Design, synthesis, antifungal activity, and structure–activity relationship studies of chalcones and hybrid dihydrochromane-chalcones. Mol Divers 24:603–615. https://doi.org/10.1007/s11030-019-09967-y

    Article  CAS  Google Scholar 

  20. Gan XH, Hu DY, Wang YJ, Yu L, Song BA (2017) Novel trans-ferulic acid derivatives containing a chalcone moiety as potential activator for plant resistance induction. J Agric Food Chem 65:4367–4377. https://doi.org/10.1021/acs.jafc.7b00958

    Article  CAS  PubMed  Google Scholar 

  21. Guo T, Xia RJ, Chen M, He J, Su SJ, Liu LW, Li XY, Xue W (2019) Biological activity evaluation and action mechanism of chalcone derivatives containing thiophene sulfonate. RSC Adv. https://doi.org/10.1039/C9RA05349B

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tang X, Su SJ, Chen M, He J, Xia RJ, Guo T, Chen Y, Zhang C, Wang J, Xue W (2019) Novel chalcone derivatives containing a 1,2,4-triazine moiety: design, synthesis, antibacterial and antiviral activities. RSC Adv 9:6011. https://doi.org/10.1039/C9RA00618D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Y, Li P, Chen M, He J, Su SJ, He M, Wang H, Xue W (2020) Synthesis and antibacterial activity of chalcone derivatives containing thioether triazole. J Heterocyclic Chem 57:983–990. https://doi.org/10.1002/jhet.3755

    Article  CAS  Google Scholar 

  24. Wang YJ, Zhou DG, He FC, Chen JX, Chen YZ, Gan XH, Hu DY, Song BA (2018) Synthesis and antiviral bioactivity of novel chalcone derivatives containing purine moiety. Chin Chem Lett 29:127–130. https://doi.org/10.1016/j.cclet.2017.07.006

    Article  CAS  Google Scholar 

  25. Chen ZH, Zheng CJ, Sun LP, Piao HR (2010) Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur J Med Chem 45:5739–5743. https://doi.org/10.1016/j.ejmech.2010.09.031

    Article  CAS  PubMed  Google Scholar 

  26. Sicak Y (2021) Design and antiproliferative and antioxidant activities of furan-based thiosemicarbazides and 1,2,4-triazoles: theirstructure-activity relationship and SwissADME predictions. Mol Divers 30:1557–1568. https://doi.org/10.1007/s00044-021-02756-z

    Article  CAS  Google Scholar 

  27. Shao WB, Wang PY, Fang ZM, Wang JJ, Guo DX, Ji J, Zhou X, Qi PY, Liu LW, Yang S (2021) Synthesis and biological evaluation of 1,2,4-triazole thioethers as both potential virulence factor inhibitors against plant bacterial diseases and agricultural antiviral agents against tobacco mosaic virus infections. J Agric Food Chem 69:15108–15122. https://doi.org/10.1021/acs.jafc.1c05202

    Article  CAS  PubMed  Google Scholar 

  28. Wu ZB, Shi J, Chen JX, Hu DY, Song BA (2021) Design, synthesis, antibacterial activity, and mechanisms of novel 1,3,4-Thiadiazole derivatives containing an amide moiety. J Agric Food Chem 69:8660–8670. https://doi.org/10.1021/acs.jafc.1c01626

    Article  CAS  PubMed  Google Scholar 

  29. Wu Q, Cai H, Yuan T, Li SY, Gan XH, Song BA (2020) Novel vanillin derivatives containing a 1,3,4-thiadiazole moiety as potential antibacterial agents. Bioorg Med Chem Lett 30:127113. https://doi.org/10.1016/j.bmcl.2020.127113

    Article  CAS  PubMed  Google Scholar 

  30. Swamy SN, Basappa PBS, Prabhuswamy B, Doreswamy BH, Prasad JS, Rangappa KS (2006) Synthesis of pharmaceutically important condensed heterocyclic 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivatives as antimicrobials. Eur J Med Chem 41:531–538. https://doi.org/10.1016/j.ejmech.2005.12.009

    Article  CAS  PubMed  Google Scholar 

  31. Karegoudar P, Prasad DJ, Ashok M, Mahalinga M, Poojary B, Holla BS (2008) Synthesis, antimicrobial and anti-inflammatory activities of some 1,2,4-triazolo[3,4-b][1,3,4]thiadiazoles and 1,2,4-triazolo [3,4-b][1,3,4]thiadiazines bearing trichlorophenyl moiety. Eur J Med Chem 43:808–815. https://doi.org/10.1016/j.ejmech.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  32. Plech T, Wujec M, Kosikowska U, Malm A, Kaproń B (2012) Studies on the synthesis and antibacterial activity of 3,6-disubstituted 1,2,4-triazolo[3,4-b]1,3,4-thiadiazoles. Eur J Med Chem 47:580–584. https://doi.org/10.1016/j.ejmech.2011.10.055

    Article  CAS  PubMed  Google Scholar 

  33. Badr SMI, RM, (2011) Synthesis of some new [1,2,4]triazolo[3,4-b][1,3,4]thiadiazines and [1,2,4]triazolo[3,4-b][1,3,4] thiadiazoles starting from 5-nitro-2-furoic acid and evaluation of their antimicrobial activity. Bioorg Med Chem 19:4506–4512. https://doi.org/10.1016/j.bmc.2011.06.024

    Article  CAS  PubMed  Google Scholar 

  34. Lv XY, Yang L, Fan ZJ, Bao XP (2018) Synthesis and antimicrobial activities of novel quinazolin-4(3H)-one derivatives containing a 1,2,4-triazolo[3,4-b] [1,3,4] thiadiazole moiety. J Saudi Chem Soc 22:101–109. https://doi.org/10.1016/j.jscs.2017.07.00

    Article  CAS  Google Scholar 

  35. Bujji S, Edigi PK, Subhashini NJP (2020) Synthesis and evaluation of novel 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole tethered chalcone hybrids as potential anticancer agents. J Heterocyclic Chem 57:3318–3325. https://doi.org/10.1002/jhet.4047

    Article  CAS  Google Scholar 

  36. Tang XM, Zhan WL, Chen S, Zhou R, Hu D, Sun N, Fei Q, Wu WN, Xue W (2022) Synthesis, bioactivity and preliminary mechanism of action of novel trifluoromethyl pyrimidine derivatives. Arab J Chem 15:10411. https://doi.org/10.1016/j.arabjc.2022.104110

    Article  CAS  Google Scholar 

  37. Liu XJ, Liu HY, Wang HX, Shi YP, Tang R, Zhang S, Chen BQ (2019) Synthesis and antitumor evaluation of novel fused heterocyclic 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazole derivatives. Med Chem Res 28:1718–1725. https://doi.org/10.1007/s00044-019-02409-2

    Article  CAS  Google Scholar 

  38. Wu SK, Shi J, Chen JX, Hu DY, Zang LS, Song BA (2021) Synthesis, antibacterial activity, and mechanisms of novel 6-sulfonyl-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives. J Agric Food Chem 69:4645–4654. https://doi.org/10.1021/acs.jafc.1c01204

    Article  CAS  PubMed  Google Scholar 

  39. Yang JX, Xie DW, Zhang CZ, Zhao CL, Wu ZB, Xue W (2022) Synthesis, antifungal activity and in vitro mechanism of novel 1-substituted-5-trifluoromethyl-1H-pyrazole-4-carboxamide derivatives. Arab J Chem 15:103987. https://doi.org/10.1016/j.arabjc.2022.103987

    Article  CAS  Google Scholar 

  40. Niu X, Zhang H, Zhang CZ, Dou L, Wu ZB (2022) Design, synthesis and in vitro antifungal mechanism of novel phenylalanine derivatives. Chem Biodiversity 19:e202200035. https://doi.org/10.1002/cbdv.202200035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Nature Science Foundation of China (No. 32072446), the Science Foundation of Guizhou Province (No. 20192452), National Key Technology Research and Demonstration Project of Hubei Agricultural Science and Technology Innovation Center (No. 202062000000207), and Key Research and Development Program of China (No. 2019YFD1002000).

Funding

National Natural Science Foundation of China, No. 32072446,Wei Xue, Natural Science Foundation of Guizhou Province,20192452, Wei Xue, Hubei Agricultural Science and Technology Innovation Center, No. 202062000000207, Hua Wang, Hebei Provincial Key Research Projects, No. 2019YFD1002000, Hua Wang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Wang or Wei Xue.

Ethics declarations

Conflict of interest

The authors declare that there are no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5017 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, W., Zhou, R., Mao, P. et al. Synthesis, antifungal activity and mechanism of action of novel chalcone derivatives containing 1,2,4-triazolo-[3,4-b]-1,3,4-thiadiazole. Mol Divers 28, 461–474 (2024). https://doi.org/10.1007/s11030-022-10593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10593-4

Keywords

Navigation