Skip to main content

Advertisement

Log in

In silico study reveals unconventional interactions between MDC1 of DDR and Beclin-1 of autophagy

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

DNA damage response (DDR) and autophagy are concerned with maintaining cellular homeostasis and dysregulation of these two pathways lead to pathologic conditions including tumorigenesis. Autophagy is activated as a protective mechanism during DDR which is indicative of their functional cooperativity but the molecular mechanism leading to the convergence of these two pathways during genotoxic stress remains elusive. In this study, through in silico analysis, we have shown an interaction between the Mediator of DNA damage checkpoint 1 (MDC1), an important DDR-associated protein, and Beclin-1, an autophagy inducer. MDC1 is an adaptor or scaffold protein known to regulate DDR, apoptosis, and cell cycle progression. While, Beclin-1 is involved in autophagosome nucleation and exhibits affinity for binding to Fork-head-associated domain (FHA) containing proteins. The FHA domain is commonly conserved in DDR-related proteins including MDC1. Through molecular docking, we have predicted the modeled complex between the MDC1 FHA domain and the Beclin-1 Coiled coil domain (CCD). The docking complex was modeled using ClusPro2.0, based on the crystal structure for the dimerized MDC1 FHA domain and Beclin-1 CCD. The complex stability and binding affinities were assessed using a Ramachandran plot, MD simulation, MM/GBSA, and PRODIGY webserver. Finally, the hot-spot residues at the interface were determined using computational alanine scanning by the DrugScorePPI webserver. Our analysis unveils significant interaction between MDC1 and Beclin-1, involving hydrogen bonds, non-bonded contacts, and salt bridges and indicates MDC1 possibly recruits Beclin-1 to the DSBs, as a consequence of which Beclin-1 is able to modulate DDR.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ruff SE, Logan SK, Garabedian MJ, Huang TT (2020) Roles for MDC1 in cancer development and treatment. DNA Repair (Amst). https://doi.org/10.1016/j.dnarep.2020.102948

    Article  PubMed  Google Scholar 

  2. Czarny P, Pawlowska E, Bialkowska-Warzecha J, Kaarniranta K, Blasiak J (2015) Autophagy in DNA damage response. Int J Mol Sci 16(2):2641–2662. https://doi.org/10.3390/ijms16022641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petrini JHJ, Stracker TH (2003) The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13(9):458–462. https://doi.org/10.1016/S0962-8924(03)00170-3

    Article  CAS  PubMed  Google Scholar 

  4. Rassool FV (2003) DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Lett 193:1–9

    Article  CAS  PubMed  Google Scholar 

  5. So S, Davis AJ, Chen DJ (2009) Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol 187(7):977–990. https://doi.org/10.1083/jcb.200906064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jungmichel S, Stucki M (2010) MDC1: the art of keeping things in focus. Chromosoma 119(4):337–349. https://doi.org/10.1007/s00412-010-0266-9

    Article  CAS  PubMed  Google Scholar 

  7. Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276(45):42462–42467. https://doi.org/10.1074/jbc.C100466200

    Article  CAS  PubMed  Google Scholar 

  8. Jungmichel S, Clapperton JA, Lloyd J et al (2012) The molecular basis of ATM-dependent dimerization of the Mdc1 DNA damage checkpoint mediator. Nucleic Acids Res 40(9):3913–3928. https://doi.org/10.1093/nar/gkr1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coster G, Goldberg M (2010) The cellular response to dna damage: a focus on MDC1 and its interacting proteins. Nucleus. https://doi.org/10.4161/nucl.11176

    Article  PubMed  Google Scholar 

  10. Lou Z, Minter-Dykhouse K, Franco S et al (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21(2):187–200. https://doi.org/10.1016/j.molcel.2005.11.025

    Article  CAS  PubMed  Google Scholar 

  11. Lou Z, Minter-Dykhouse K, Wu X, Chen J (2003) MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421(6926):957–961. https://doi.org/10.1038/nature01447

    Article  CAS  PubMed  Google Scholar 

  12. Zhang J, Ma Z, Treszezamsky A, Powell SN (2005) MDC1 interacts with Rad51 and facilitates homologous recombination. Nat Struct Mol Biol 12(10):902–909. https://doi.org/10.1038/nsmb991

    Article  CAS  PubMed  Google Scholar 

  13. Panier S, Durocher D (2009) Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair (Amst) 8(4):436–443. https://doi.org/10.1016/j.dnarep.2009.01.013

    Article  CAS  PubMed  Google Scholar 

  14. Nowsheen S, Lou Z (2018) Calling RNF168 to action. Cell Stress 2(5):113–114. https://doi.org/10.15698/cst2018.05.135

    Article  PubMed  PubMed Central  Google Scholar 

  15. Goldberg M, Stucki M, Falck J et al (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421(6926):952–956. https://doi.org/10.1038/nature01445

    Article  CAS  PubMed  Google Scholar 

  16. Luo K, Yuan J, Chen J, Lou Z (2009) Topoisomerase IIα controls the decatenation checkpoint. Nat Cell Biol 11(2):204–210. https://doi.org/10.1038/ncb1828

    Article  CAS  PubMed  Google Scholar 

  17. Leimbacher PA, Jones SE, Shorrocks AMK et al (2019) MDC1 interacts with TOPBP1 to maintain chromosomal stability during mitosis. Mol Cell 74(3):571-583.e8. https://doi.org/10.1016/j.molcel.2019.02.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nakanishi M, Ozaki T, Yamamoto H et al (2007) NFBD1/MDC1 associates with p53 and regulates its function at the crossroad between cell survival and death in response to DNA damage. J Biol Chem 282(31):22993–23004. https://doi.org/10.1074/jbc.M611412200

    Article  CAS  PubMed  Google Scholar 

  19. Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90(2):313–323. https://doi.org/10.1016/j.biochi.2007.08.014

    Article  CAS  PubMed  Google Scholar 

  20. Alexander A, Cai SL, Kim J et al (2012) Erratum: ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS (Proceedings of the National Academy of Sciences (2010) 107 (4153-4158) https://doi.org/10.1073/pnas.0913860107). Proc Natl Acad Sci USA 109(21):8352. https://doi.org/10.1073/pnas.1206201109

  21. Liu EY, Xu N, O’Prey J et al (2015) Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc Natl Acad Sci USA 112(3):773–778. https://doi.org/10.1073/pnas.1409563112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA 100(25):15077–15082. https://doi.org/10.1073/pnas.2436255100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qu X, Yu J, Bhagat G et al (2003) Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 112(12):1809–1820. https://doi.org/10.1172/JCI20039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chavez-Dominguez R, Perez-Medina M, Lopez-Gonzalez JS, Galicia-Velasco M, Aguilar-Cazares D (2020) The double-edge sword of autophagy in cancer: from tumor suppression to pro-tumor activity. Front Oncol 10(October):1–19. https://doi.org/10.3389/fonc.2020.578418

    Article  Google Scholar 

  25. Xu F, Fang Y, Yan L et al (2017) Nuclear localization of Beclin 1 promotes radiation-induced DNA damage repair independent of autophagy. Sci Rep. https://doi.org/10.1038/srep45385

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guo Q, Wang S, Zhang S et al (2020) ATM - CHK 2-Beclin 1 axis promotes autophagy to maintain ROS homeostasis under oxidative stress. EMBO J 39(10):1–17. https://doi.org/10.15252/embj.2019103111

    Article  CAS  Google Scholar 

  27. Chang YC, Peng YX, Yu BH et al (2021) VCP maintains nuclear size by regulating the DNA damage-associated MDC1–p53–autophagy axis in Drosophila. Nat Commun 12(1):1–17. https://doi.org/10.1038/s41467-021-24556-0

    Article  CAS  Google Scholar 

  28. Rose PW, Beran B, Bi C et al (2011) The RCSB Protein Data Bank: redesigned web site and web services. Nucleic Acids Res 39(SUPPL. 1):392–401. https://doi.org/10.1093/nar/gkq1021

    Article  CAS  Google Scholar 

  29. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  30. Kozakov D, Hall DR, Xia B et al (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12(2):255–278. https://doi.org/10.1038/nprot.2016.169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Laskowski RA, Jabłońska J, Pravda L, Vařeková RS, Thornton JM (2018) PDBsum: structural summaries of PDB entries. Protein Sci 27(1):129–134. https://doi.org/10.1002/pro.3289

    Article  CAS  PubMed  Google Scholar 

  32. Unit M, Street G (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. https://doi.org/10.1107/S0021889892009944

    Article  Google Scholar 

  33. Najibi SM, Maadooliat M, Zhou L, Huang JZ, Gao X (2017) Protein structure classification and loop modeling using multiple ramachandran distributions. Comput Struct Biotechnol J 15:243–254. https://doi.org/10.1016/j.csbj.2017.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xue LC, Rodrigues JP, Kastritis PL, Bonvin AM, Vangone A (2016) PRODIGY: a web server for predicting the binding affinity of protein-protein complexes. Bioinformatics 32(23):3676–3678. https://doi.org/10.1093/bioinformatics/btw514

    Article  CAS  PubMed  Google Scholar 

  35. Vangone A, Bonvin A (2017) PRODIGY: a contact-based predictor of binding affinity in protein-protein complexes. Bio-Protoc. https://doi.org/10.21769/BIOPROTOC.2124

    Article  PubMed  PubMed Central  Google Scholar 

  36. Massova I, Kollman PA (1999) Computational alanine scanning to probe protein−protein interactions: a novel approach to evaluate binding free energies. J Am Chem Soc 3:1–11

    Google Scholar 

  37. Krüger DM, Gohlke H (2010) DrugScorePPI webserver: fast and accurate in silico alanine scanning for scoring protein-protein interactions. Nucleic Acids Res 38(SUPPL. 2):480–486. https://doi.org/10.1093/nar/gkq471

    Article  CAS  Google Scholar 

  38. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  39. Lindahl E, Bjelkmar P, Larsson P, Cuendet MA, Hess B (2010) Implementation of the charmm force field in GROMACS: analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 6(2):459–466. https://doi.org/10.1021/ct900549r

    Article  CAS  PubMed  Google Scholar 

  40. Peng X, Wang J, Peng W, Wu FX, Pan Y (2017) Protein-protein interactions: detection, reliability assessment and applications. Brief Bioinform 18(5):798–819. https://doi.org/10.1093/bib/bbw066

    Article  CAS  PubMed  Google Scholar 

  41. Chen F, Sun H, Wang J et al (2018) Assessing the performance of MM/PBSA and MM/GBSA methods. 8. Predicting binding free energies and poses of protein-RNA complexes. RNA 24(9):1183–1194. https://doi.org/10.1261/rna.065896.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Weng G, Wang E, Wang Z et al (2019) HawkDock: a web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Res 47(W1):W322–W330. https://doi.org/10.1093/nar/gkz397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stitou M, Toufik H, Bouachrine M, Lamchouri F (2021) Quantitative structure–activity relationships analysis, homology modeling, docking and molecular dynamics studies of triterpenoid saponins as Kirsten rat sarcoma inhibitors. J Biomol Struct Dyn 39(1):152–170. https://doi.org/10.1080/07391102.2019.1707122

    Article  CAS  PubMed  Google Scholar 

  44. Maréchal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol 5(9):1–17. https://doi.org/10.1101/cshperspect.a012716

    Article  CAS  Google Scholar 

  45. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123(7):1213–1226. https://doi.org/10.1016/j.cell.2005.09.038

    Article  CAS  PubMed  Google Scholar 

  46. Qiu XLZ, Zuo ZWW, Liu ZGC (2017) NFBD1 / MDC1 participates in the regulation of proliferation and apoptosis in human laryngeal squamous cell carcinoma. Clin Transl Oncol. https://doi.org/10.1007/s12094-017-1748-5

    Article  PubMed  Google Scholar 

  47. Singh N, Bhakuni R, Chhabria D, Kirubakaran S (2020) MDC1 depletion promotes cisplatin induced cell death in cervical cancer cells. BMC Res Notes 13(1):1–9. https://doi.org/10.1186/s13104-020-04996-5

    Article  CAS  Google Scholar 

  48. Ruff SE, Logan SK, Garabedian MJ, Huang TT (2020) Roles for MDC1 in cancer development and treatment. DNA Repair (Amst) 95(August):102948. https://doi.org/10.1016/j.dnarep.2020.102948

    Article  CAS  PubMed  Google Scholar 

  49. Dziadkowiec KN, Gasiorowska E, Nowak-Markwitz E, Jankowska A (2016) PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Prz Menopauzalny 15(4):215–219. https://doi.org/10.5114/pm.2016.65667

    Article  CAS  PubMed  Google Scholar 

  50. Shin DW (2020) Dual roles of autophagy and their potential drugs for improving cancer therapeutics. Biomol Ther 28(6):503–511. https://doi.org/10.4062/biomolther.2020.155

    Article  CAS  Google Scholar 

  51. Lin JF, Lin YC, Tsai TF, Chen HE, Chou KY, Hwang TIS (2017) Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des Devel Ther 11:1517–1533. https://doi.org/10.2147/DDDT.S126464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mathew R, Karp CM, Beaudoin B et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075. https://doi.org/10.1016/j.cell.2009.03.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cicchini M, Chakrabarti R, Kongara S et al (2014) Autophagy regulator BECN1 suppresses mammary tumorigenesis driven by WNT1 activation and following parity. Autophagy 10(11):2036–2052. https://doi.org/10.4161/auto.34398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Patel AN, Goyal S, Wu H, Schiff D, Moran MS, Haffty BG (2011) Mediator of DNA damage checkpoint protein 1 ( MDC1) expression as a prognostic marker for nodal recurrence in early-stage breast cancer patients treated with breast-conserving surgery and radiation therapy. Breast Cancer Res Treat 1:601–607. https://doi.org/10.1007/s10549-010-0960-6

    Article  CAS  Google Scholar 

  55. Caracciolo D, Riillo C, Teresa M, Martino D, Tagliaferri P (2021) Repair as cancer’s Achilles ’ heel

Download references

Acknowledgements

The authors acknowledge the Indian Institute of Advanced Research Gandhinagar for a seed grant to carry out this work. We would like to thank Dr. Ashutosh Srivastava, Assistant Professor, Biological Engineering, Indian Institute of Technology-Gandhinagar (IITGN) for his valuable comments related to the structural analysis of proteins. We also acknowledge Lady Tata Memorial Trust (LTMT) for providing fellowship to Ms. Kavya Pandya. The authors are thankful to the Gujarat Council of Science and Technology (GUJCOST), Dept. of Science and Technology, Gujarat for providing the PARAM SHAVAK supercomputer facility at IAR.

Author information

Authors and Affiliations

Authors

Contributions

NS did the conceptualization of the study. NS and KP designed the study. KP performed the in silico experiments. NS and KP wrote the manuscript. Both the authors have contributed equally in reviewing and editing the manuscript and approve the final manuscript.

Corresponding author

Correspondence to Neeru Singh.

Ethics declarations

Competing interests

The authors declare that they do not have any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, K., Singh, N. In silico study reveals unconventional interactions between MDC1 of DDR and Beclin-1 of autophagy. Mol Divers 27, 2789–2802 (2023). https://doi.org/10.1007/s11030-022-10579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10579-2

Keywords

Navigation