Skip to main content

Advertisement

Log in

MDC1: The art of keeping things in focus

  • REVIEW
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

The chromatin structure is important for recognition and repair of DNA damage. Many DNA damage response proteins accumulate in large chromatin domains flanking sites of DNA double-strand breaks. The assembly of these structures—usually termed DNA damage foci—is primarily regulated by MDC1, a large nuclear mediator/adaptor protein that is composed of several distinct structural and functional domains. Here, we are summarizing the latest discoveries about the mechanisms by which MDC1 mediates DNA damage foci formation, and we are reviewing the considerable efforts taken to understand the functional implication of these structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn J, Prives C (2002) Checkpoint kinase 2 (Chk2) monomers or dimers phosphorylate Cdc25C after DNA damage regardless of threonine 68 phosphorylation. J Biol Chem 277(50):48418–48426

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Hořejsí Z, Sehested M, Nesland JM, Rajpert-De Meyts E, Skakkebæk NE, Stucki M, Jackson S, Lukas J, Bartek J (2007) DNA damage response mediators MDC1 and 53BP1: constitutive activation and aberrant loss in breast and lung cancer, but not in testicular germ cell tumours. Oncogene 26(53):7414–7422

    Article  CAS  PubMed  Google Scholar 

  • Bekker-Jensen S, Lukas C, Kitagawa R, Melander F, Kastan MB, Bartek J, Lukas J (2006) Spatial organization of the mammalian genome surveillance machinery in response to DNA strand breaks. J Cell Biol 173(2):195–206

    Article  CAS  PubMed  Google Scholar 

  • Botuyan MV, Lee J, Ward IM, Kim JE, Thompson JR, Chen J, Mer G (2006) Structural basis for the methylation state-specific recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell 127(7):1361–1373

    Article  CAS  PubMed  Google Scholar 

  • Cerosaletti KM, Concannon P (2003) Nibrin forkhead-associated domain and breast cancer C-terminal domain are both required for nuclear focus formation and phosphorylation. J Biol Chem 278(24):21944–21951

    Article  CAS  PubMed  Google Scholar 

  • Chapman J, Jackson S (2008) Phospho-dependent interactions between NBS1 and MDC1 mediate chromatin retention of the MRN complex at sites of DNA damage. EMBO Rep 9(8):795–801

    Article  CAS  PubMed  Google Scholar 

  • Cook P, Ju B, Telese F, Wang X, Glass C, Rosenfeld M (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458(7238):591–596

    Article  CAS  PubMed  Google Scholar 

  • Coster G, Hayouka Z, Argaman L, Strauss C, Friedler A, Brandeis M, Goldberg M (2007) The DNA damage response mediator MDC1 directly interacts with the anaphase-promoting complex/cyclosome. J Biol Chem 282(44):32053–32064

    Article  CAS  PubMed  Google Scholar 

  • de Jager M, van Noort J, van Gent DC, Dekker C, Kanaar R, Wyman C (2001) Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Mol Cell 8(5):1129–1135

    Article  PubMed  Google Scholar 

  • Difilippantonio S, Celeste A, Kruhlak M, Lee Y, Difilippantonio MJ, Feigenbaum L, Jackson SP, McKinnon PJ, Nussenzweig A (2007) Distinct domains in Nbs1 regulate irradiation-induced checkpoints and apoptosis. J Exp Med 204(5):1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Dimitrova N, de Lange T (2006) MDC1 accelerates nonhomologous end-joining of dysfunctional telomeres. Genes & Development 20(23):3238–3243

    Article  CAS  Google Scholar 

  • Dimitrova N, de Lange T (2008) 53BP1 promotes non-homologous end joining of telomeres by increasing chromatin mobility. Nature 456(7221):524–528

    Article  CAS  PubMed  Google Scholar 

  • Doil C, Mailand N, Bekker-Jensen S, Menard P, Larsen D, Pepperkok R, Ellenberg J, Panier S, Durocher D, Bartek J (2009) RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins. Cell 136(3):435–446

    Article  CAS  PubMed  Google Scholar 

  • Dronamraju R, Mason JM (2009) Recognition of double strand breaks by a mutator protein (MU2) in Drosophila melanogaster. PLoS Genet 5(5):e1000473

    Article  PubMed  Google Scholar 

  • Durocher D, Jackson S (2002) The FHA domain. FEBS Lett 513(1):58–66

    Article  CAS  PubMed  Google Scholar 

  • Durocher D, Taylor IA, Sarbassova D, Haire LF, Westcott SL, Jackson SP, Smerdon SJ, Yaffe MB (2000) The molecular basis of FHA domain: phosphopeptide binding specificity and implications for phospho-dependent signaling mechanisms. Mol Cell 6(5):1169–1182

    Article  CAS  PubMed  Google Scholar 

  • Falck J, Coates J, Jackson S (2005) Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434(7033):605–611

    Article  CAS  PubMed  Google Scholar 

  • Goldberg M, Stucki M, Falck J, D'amours D, Rahman D, Pappin D, Bartek J, Jackson S (2003) MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421(6926):952–956

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb TM, Jackson SP (1993) The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72(1):131–142

    Article  CAS  PubMed  Google Scholar 

  • Huen M, Grant R, Manke I, Minn K, Yu X, Yaffe M, Chen J (2007) RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell 131(5):901–914

    Article  CAS  PubMed  Google Scholar 

  • Huyen Y, Zgheib O, Ditullio RA, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD (2004) Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432(7015):406–411

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Chen J, Yu X (2007) Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response. Science 316(5828):1202–1205

    Article  CAS  PubMed  Google Scholar 

  • Kolas N, Chapman J, Nakada S, Ylanko J, Chahwan R, Sweeney F, Panier S, Mendez M, Wildenhain J, Thomson T, Pelletier L, Jackson S, Durocher D (2007) Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science 318(5856):1637–1640

    Article  CAS  PubMed  Google Scholar 

  • Lee MS, Edwards RA, Thede GL, Glover J (2005) Structure of the BRCT repeat domain of MDC1 and its specificity for the free COOH-terminal end of the gamma-H2AX histone tail. J Biol Chem 280(37):32053–32056

    Article  CAS  PubMed  Google Scholar 

  • Li J, Taylor IA, Lloyd J, Clapperton JA, Howell S, MacMillan D, Smerdon SJ (2008) Chk2 oligomerization studied by phosphopeptide ligation: implications for regulation and phosphodependent interactions. J Biol Chem 283(51):36019–36030

    Article  CAS  PubMed  Google Scholar 

  • Lloyd J, Chapman J, Clapperton JA, Haire LF, Hartsuiker E, Li J, Carr AM, Jackson S, Smerdon SJ (2009) A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139(1):100–111

    Article  CAS  PubMed  Google Scholar 

  • Lou Z, Minter-Dykhouse K, Wu X, Chen J (2003) MDC1 is coupled to activated CHK2 in mammalian DNA damage response pathways. Nature 421(6926):957–961

    Article  CAS  PubMed  Google Scholar 

  • Lou Z, Chen BP, Asaithamby A, Minter-Dykhouse K, Chen DJ, Chen J (2004) MDC1 regulates DNA-PK autophosphorylation in response to DNA damage. J Biol Chem 279(45):46359–46362

    Article  CAS  PubMed  Google Scholar 

  • Lou Z, Minter-Dykhouse K, Franco S, Gostissa M, Rivera MA, Celeste A, Manis JP, van Deursen J, Nussenzweig A, Paull TT, Alt FW, Chen J (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21(2):187–200

    Article  CAS  PubMed  Google Scholar 

  • Lukas C, Falck J, Bartkova J, Bartek J, Lukas J (2003) Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 5(3):255–260

    Article  CAS  PubMed  Google Scholar 

  • Lukas C, Melander F, Stucki M, Falck J, Bekker-Jensen S, Goldberg M, Lerenthal Y, Jackson S, Bartek J, Lukas J (2004) Mdc1 couples DNA double-strand break recognition by Nbs1 with its H2AX-dependent chromatin retention. EMBO J 23(13):2674–2683

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Yuan J, Chen J, Lou Z (2009) Topoisomerase IIalpha controls the decatenation checkpoint. Nat Cell Biol 11(2):204–210

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Bekkerjensen S, Faustrup H, Melander F, Bartek J, Lukas C, Lukas J (2007) RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins. Cell 131(5):887–900

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ (2007) ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316(5828):1160–1166

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K, Shinohara A, Shinohara M (2008) Forkhead-associated domain of yeast Xrs2, a homolog of human Nbs1, promotes nonhomologous end joining through interaction with a ligase IV partner protein, Lif1. Genetics 179(1):213–225

    Article  CAS  PubMed  Google Scholar 

  • Meier A, Fiegler H, Muñoz P, Ellis P, Rigler D, Langford C, Blasco M, Carter N, Jackson S (2007) Spreading of mammalian DNA-damage response factors studied by ChIP-chip at damaged telomeres. EMBO J 26(11):2707–2718

    Article  CAS  PubMed  Google Scholar 

  • Melander F, Bekker-Jensen S, Falck J, Bartek J, Mailand N, Lukas J (2008) Phosphorylation of SDT repeats in the MDC1 N terminus triggers retention of NBS1 at the DNA damage-modified chromatin. J Cell Biol 181(2):213–226

    Article  CAS  PubMed  Google Scholar 

  • Minter-Dykhouse K, Ward I, Huen SY, Chen J, Lou Z (2008) Distinct versus overlapping functions of MDC1 and 53BP1 in DNA damage response and tumorigenesis. J Cell Biol 181(5):727–735

    Article  CAS  PubMed  Google Scholar 

  • Mohammad D, Yaffe MB (2009) 14-3-3 proteins, FHA domains and BRCT domains in the DNA damage response. DNA Repair 8(9):1009–1017

    Google Scholar 

  • Nakada S, Chen GI, Gingras AC, Durocher D (2008) PP4 is a gamma H2AX phosphatase required for recovery from the DNA damage checkpoint. EMBO Rep 9(10):1019–1026

    Article  CAS  PubMed  Google Scholar 

  • Panier S, Durocher D (2009) Regulatory ubiquitylation in response to DNA double-strand breaks. DNA Repair 8(4):436–443

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez M, Yu X, Chen J, Songyang Z (2003) Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J Biol Chem 278(52):52914–52918

    Article  CAS  PubMed  Google Scholar 

  • Rogakou EP, Boon C, Redon C, Bonner WM (1999) Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol 146(5):905–916

    Article  CAS  PubMed  Google Scholar 

  • Savic V, Yin B, Maas N, Bredemeyer A, Carpenter A, Helmink B, Yang-Iott K, Sleckman B, Bassing C (2009) Formation of dynamic γ-H2AX domains along broken DNA strands is distinctly regulated by ATM and MDC1 and dependent upon H2AX densities in chromatin. Mol Cell 34(3):298–310

    Article  CAS  PubMed  Google Scholar 

  • Shang YL, Bodero AJ, Chen PL (2003) NFBD1, a novel nuclear protein with signature motifs of FHA and BRCT, and an internal 41-amino acid repeat sequence, is an early participant in DNA damage response. J Biol Chem 278(8):6323–6329

    Article  CAS  PubMed  Google Scholar 

  • Sobhian B, Shao G, Lilli DR, Culhane AC, Moreau LA, Xia B, Livingston DM, Greenberg RA (2007) RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites. Science 316(5828):1198–1202

    Article  CAS  PubMed  Google Scholar 

  • Spycher C, Miller ES, Townsend K, Pavic L, Morrice NA, Janscak P, Stewart GS, Stucki M (2008) Constitutive phosphorylation of MDC1 physically links the MRE11-RAD50-NBS1 complex to damaged chromatin. J Cell Biol 181(2):227–240

    Article  CAS  PubMed  Google Scholar 

  • Stewart GS (2009) Solving the RIDDLE of 53BP1 recruitment to sites of damage. Cell Cycle 8(10):1532–1538

    Article  CAS  PubMed  Google Scholar 

  • Stewart GS, Wang B, Bignell CR, Taylor AM, Elledge SJ (2003) MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421(6926):961–966

    Article  CAS  PubMed  Google Scholar 

  • Stewart GS, Stankovic T, Byrd PJ, Wechsler T, Miller ES, Huissoon A, Drayson MT, West S, Elledge SJ, Taylor AM (2007) RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling. Proc Natl Acad Sci USA 104(43):16910–16915

    Article  CAS  PubMed  Google Scholar 

  • Stewart G, Panier S, Townsend K, Al-Hakim A, Kolas N, Miller E, Nakada S, Ylanko J, Olivarius S, Mendez M (2009) The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136(3):420–434

    Article  CAS  PubMed  Google Scholar 

  • Stucki M (2009) Histone H2A.X Tyr142 phosphorylation: a novel sWItCH for apoptosis? DNA Repair 8(7):873–876

    Article  CAS  PubMed  Google Scholar 

  • Stucki M, Jackson S (2004) MDC1/NFBD1: a key regulator of the DNA damage response in higher eukaryotes. DNA Repair 3(8–9):953–957

    Article  CAS  PubMed  Google Scholar 

  • Stucki M, Jackson S (2006) γH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 5(5):534–543

    Article  CAS  PubMed  Google Scholar 

  • Stucki M, Clapperton J, Mohammad D, Yaffe M, Smerdon S, Jackson S (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell 123(7):1213–1226

    Article  CAS  PubMed  Google Scholar 

  • Townsend K, Dyson H, Blackford AN, Miller ES, Chapman JR, Sedgwick GG, Barone G, Turnell AS, Stewart GS (2009) Mediator of DNA damage checkpoint 1 (MDC1) regulates mitotic progression. J Biol Chem 284(49):33939–33948

    Article  CAS  PubMed  Google Scholar 

  • Van Attikum H, Gasser S (2009) Crosstalk between histone modifications during the DNA damage response. Trends Cell Biol 19(5):207-217

    Google Scholar 

  • Wang B, Matsuoka S, Ballif BA, Zhang D, Smogorzewska A, Gygi SP, Elledge SJ (2007) Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response. Science 316(5828):1194–1198

    Article  CAS  PubMed  Google Scholar 

  • Williams RS, Williams JS, Tainer JA (2007) Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol 85(4):509–520

    Article  CAS  PubMed  Google Scholar 

  • Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS, Guenther G, Classen S, Glover J, Iwasaki H, Russell P, Tainer JA (2009) Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139(1):87–99

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Luo K, Lou Z, Chen J (2008) MDC1 regulates intra-S-phase checkpoint by targeting NBS1 to DNA double-strand breaks. Proc Natl Acad Sci USA 105(32):11200–11205

    Article  CAS  PubMed  Google Scholar 

  • Xiao A, Li H, Shechter D, Ahn S, Fabrizio L, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel D, Elledge SJ, Allis C (2009) WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity. Nature 457(7225):57–62

    Article  CAS  PubMed  Google Scholar 

  • Xie A, Hartlerode A, Stucki M, Odate S, Puget N, Kwok A, Nagaraju G, Yan C, Alt FW, Chen J, Jackson S, Scully R (2007) Distinct roles of chromatin-associated proteins MDC1 and 53BP1 in mammalian double-strand break repair. Mol Cell 28(6):1045–1057

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wu L, Cui G, Botuyan M, Chen J, Mer G (2008) Structure of a second BRCT domain identified in the nijmegen breakage syndrome protein Nbs1 and its function in an MDC1-dependent localization of Nbs1 to DNA damage sites. J Mol Biol 381(2):361–372

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ma Z, Treszezamsky A, Powell SN (2005) MDC1 interacts with Rad51 and facilitates homologous recombination. Nat Struct Mol Biol 12(10):902–909

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Renthal W, Lee EY (2002) Functional analysis of FHA and BRCT domains of NBS1 in chromatin association and DNA damage responses. Nucleic Acids Res 30(22):4815–4822

    Article  CAS  PubMed  Google Scholar 

  • Zhou BB, Elledge SJ (2000) The DNA damage response: putting checkpoints in perspective. Nature 408(6811):433–439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Flurina Hari for critical reading of the manuscript. Research in the Stucki laboratory is supported by the Swiss National Foundation and by the Kanton of Zürich.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Stucki.

Additional information

Communicated by E. Nigg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jungmichel, S., Stucki, M. MDC1: The art of keeping things in focus. Chromosoma 119, 337–349 (2010). https://doi.org/10.1007/s00412-010-0266-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-010-0266-9

Keywords

Navigation