Skip to main content

Advertisement

Log in

In silico identification of 1,2,4-triazoles as potential Candida Albicans inhibitors using 3D-QSAR, molecular docking, molecular dynamics simulations, and ADMET profiling

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Fluconazole and Voriconazole are individual antifungal inhibitors broadly adopted for treating fungal infections, including Candida Albicans. Unfortunately, these medicines clinically used have significant side effects. Consequently, the improvement of safer and better therapy became more indispensable. In this study, a set of 27 1,2,4-triazole compounds have been tested as potential Candida Albicans inhibitors by using different theoretical methods. The created comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) contour maps significantly impacted the development of novel Candida Albicans inhibitors with valuable activities. The mode of interactions between the 1,2,4-triazole inhibitors and the targeted receptor was studied by molecular docking simulation. The proposed new molecule P1 showed satisfied stability in the active pocket of the targeted receptor compared to the more active molecule in the dataset compared to Fluconazole medication. Meanwhile, the binding energy obtained by molecular docking for molecule P1 is − 9.3 kcal/mol compared with − 6.7 kcal/mol for Fluconazole medication. Also, MM/GBSA value obtained by molecular dynamics simulations at 100 ns for molecule P1 is − 33.34 kcal/mol compared with − 15.85 kcal/mol for Fluconazole medication. In addition, molecule P1 showed good oral bioavailability and was non-toxic according to ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties. Therefore, the results indicated compound P1 might be a future inhibitor of Candida Albicans infection.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Torabi I, Sharififar F, Izadi A, Mousavi SAA (2022) Inhibitory effects of different fractions separated from standardized extract of Myrtus communis L. against nystatin-susceptible and nystatin-resistant Candida albicans isolated from HIV positive patients. Heliyon. 8:e09073. https://doi.org/10.1016/j.heliyon.2022.e09073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Calderone R, Clancy C (2012) Candida and Candidiasis, 2nd edn. American Society for Microbiology, Washington, DC

    Google Scholar 

  3. Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, Patrick PM (2010) Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PloS Pathog 6:e1000713. https://doi.org/10.1371/journal.ppat.1000713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin S, Li L, Su L, Li H, Zhao Y, Wu Y, Liu R, Zou F, Ni G (2002) Synthesis and in vitro synergistic antifungal activity of analogues of Panax stipulcanatus saponin against fluconazole-resistant Candida albicans. Carbohydr Res 517:108575. https://doi.org/10.1016/j.carres.2022.108575

    Article  CAS  Google Scholar 

  5. Yang L, Zhong L, Ma Z, Sui Y, Xie J, Liu X, Ma T (2022) Antifungal effects of alantolactone on Candida albicans: an in vitro study. Biomed Pharmacother 149:112814. https://doi.org/10.1080/21505594.2014.1000752

    Article  CAS  PubMed  Google Scholar 

  6. Wall G, Montelongo-Jauregui D, Vidal Bonifacio B, Lopez-Ribot JL, Uppuluri P (2019) Candida albicans biofilm growth and dispersal: contributions to pathogenesis. Curr. Opin. Microbiol. 52:1–6. https://doi.org/10.1016/j.mib.2019.04.001

  7. Wang Y (2015) Looking into Candida albicans infection, host response, and antifungal strategies. Virulence 6:307–308. https://doi.org/10.1080/21505594.2014.1000752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92. https://doi.org/10.1146/annurev-micro-091014-104330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Turel O (2011) Newer antifungal agents. Expert Rev Anti Infect Ther 9:325–338. https://doi.org/10.1586/eri.10.163

    Article  CAS  PubMed  Google Scholar 

  10. Ni T, Pang L, Cai Z, Xie F, Ding Z, Hao Y, Li R, Yu S, Chai X, Wang T, Jin Y, Zhang D, Jiang Y (2019) Design, synthesis, and in vitro antifungal evaluation of new triazole derivatives bearing alkynyl side chains. J Saudi Chem Soc 23:576–585. https://doi.org/10.1016/j.jscs.2018.10.003

    Article  CAS  Google Scholar 

  11. Liu Y, Ren H, Wang D, Zhang M, Sun S, Zhao Y (2020) The synergistic antifungal effects of gypenosides combined with fluconazole against resistant Candida albicans via inhibiting the drug efflux and biofilm formation. Biomed Pharmacother 130:110580. https://doi.org/10.1016/j.biopha.2020.110580

    Article  CAS  PubMed  Google Scholar 

  12. Xu L-Z, Zhang S, Niu SY, Qin Y, Li XM, Jiao K (2004) Synthesis and biological activities of new triazole compounds containing 1,3-dioxolane rings. Molecules 9:913–921. https://doi.org/10.3390/91100913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Acetti D, Brenna E, Fuganti C, Gatti FG, Serra S (2009) Enzyme-catalysed approach to the preparation of triazole antifungals: synthesis of (−)-genaconazole. Tetrahedron Asymmetry 20:2413–2420. https://doi.org/10.1016/j.tetasy.2009.09.024

    Article  CAS  Google Scholar 

  14. Ahuja R, Sidhu A, Bala A, Arora D, Sharma P (2020) Structure based approach for twin-enzyme targeted benzimidazolyl-1,2,4-triazole molecular hybrids as antifungal agents. Arab J Chem 13:5832–5848. https://doi.org/10.1016/j.arabjc.2020.04.020

    Article  CAS  Google Scholar 

  15. Khaldan A, Bouamrane S, El-mernissi R, Maghat H, Ajana MA, Sbai A, Bouachrine M, Lakhlifi T (2021) 3D-QSAR modeling, molecular docking and ADMET properties of benzothiazole derivatives as a-glucosidase inhibitors. Mat Pr 45:7643–7652. https://doi.org/10.1016/j.matpr.2021.03.114

    Article  CAS  Google Scholar 

  16. Huang M, Huang M, Wang X, Duan W-G, Lin G-S, Lei F-H (2022) Synthesis, antifungal activity and 3D-QSAR study of novel acyl thiourea compounds containing gem-dimethylcyclopropane ring. Mol Divers 26:125–136. https://doi.org/10.1007/s11030-020-10163-6

    Article  CAS  PubMed  Google Scholar 

  17. Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design–a review. Curr Top Med Chem 10:95–115. https://doi.org/10.2174/156802610790232260

    Article  CAS  PubMed  Google Scholar 

  18. Khaldan A, Bouamrane S, En-Nahli F, El-mernissi R, El khatabi K, Hmamouchi R, Maghat H, Ajana MA, Sbai A, Bouachrine M, Lakhlifi T, (2021) Prediction of potential inhibitors of SARS-CoV-2 using 3D-QSAR, molecular docking modeling and ADMET properties. Heliyon 7:e06603. https://doi.org/10.1016/j.heliyon.2021.e06603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fekri A, Keshk EM, Khalil A-GM, Taha I (2022) Synthesis of novel antioxidant and antitumor 5-aminopyrazole derivatives, 2D/3D QSAR, and molecular docking. Mol Divers 26:781–800. https://doi.org/10.1007/s11030-021-10184-9

    Article  CAS  PubMed  Google Scholar 

  20. Khaldan A, El khatabi K, El-mernissi R, Sbai A, Bouachrine M, Lakhlifi T (2020) Combined 3D-QSAR modeling and molecular docking study on metronidazole-triazole-styryl hybrids as antiamoebic activity. Mor J Chem 8:527–53. https://doi.org/10.48317/IMIST.PRSM/morjchem-v8i2.19099

  21. Elekofehinti OO, Iwaloye O, Josiah SS, Lawal AO, Akinjiyan MO, Ariyo EO (2022) Molecular docking studies, molecular dynamics and ADME/tox reveal therapeutic potentials of STOCK1N-69160 against papain-like protease of SARS-CoV-2. Mol Divers 25:1761–1773. https://doi.org/10.1007/s11030-020-10151-w

    Article  CAS  Google Scholar 

  22. Patel CN, Kumar SP, Pandya HA, Rawal RM (2021) Identification of potential inhibitors of coronavirus hemagglutinin-esterase using molecular docking, molecular dynamics simulation and binding free energy calculation. Mol Divers 25:421–433. https://doi.org/10.1007/s11030-020-10135-w

    Article  CAS  PubMed  Google Scholar 

  23. SYBYL-X 2.0. St. Louis, MO, USA: Tripos Inc; http://www.tripos.com.

  24. Clark M, Cramer RD, Van Opdenbosch N (1989) Validation of the general purpose tripos 5.2 force field. J Comput Chem 10:982–1012. https://doi.org/10.1002/jcc.540100804

    Article  CAS  Google Scholar 

  25. Tsai KC, Chen YC, Hsiao NW, Wang CL, Lin CL, Lee YC, Li M, Wang B (2010) A comparison of different electrostatic potentials on prediction accuracy in CoMFA and CoMSIA studies. Eur J Med Chem 45:1544–1551. https://doi.org/10.1016/j.ejmech.2009.12.063

    Article  CAS  PubMed  Google Scholar 

  26. Purcell WP, Singer JA (1967) A brief review and table of semiempirical parameters used in the Hueckel molecular orbital method. J Chem Eng Data 12:235–246. https://doi.org/10.1021/je60033a020

    Article  CAS  Google Scholar 

  27. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967. https://doi.org/10.1021/ja00226a005

    Article  CAS  PubMed  Google Scholar 

  28. Ståhle L, Wold S (1988) Multivariate data analysis and experimental design in biomedical research. Progress Med Chem 25:291–338. https://doi.org/10.1016/S0079-6468(08)70281-9

    Article  Google Scholar 

  29. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146. https://doi.org/10.1021/jm00050a010

    Article  CAS  PubMed  Google Scholar 

  30. Wold S (1991) Validation of QSAR’s. Quant Struct Act Relat 10:191–193. https://doi.org/10.1002/qsar.19910100302

    Article  CAS  Google Scholar 

  31. Rücker C, Rücker G, Meringer M (2007) y-Randomization and its variants in QSPR/ QSAR. J Chem Inf Model 47:2345–2357. https://doi.org/10.1021/ci700157b

    Article  CAS  PubMed  Google Scholar 

  32. Bouamrane S, Khaldan A, Maghat H, Ajana MA, Sbai A, Bouachrine M, Lakhlifi T (2021) In-silico design of new triazole analogs using QSAR and molecular docking models. Rhazesv 11:224–237. https://doi.org/10.48419/IMIST.PRSM/rhazes-v11.25084

  33. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dassault Syst emes BIOVIA, Discovery Studio Modeling Environment, Release 2017, Dassault Syst emes, San Diego, 2016 [WWW document], http://accelrys.com/products/collaborativescience/biovia-discovery-studio/. Accessed 25 Feb 2017.

  35. DeLano W (2017) The PyMOL molecular graphics system delano scientific, Palo Alto, CA, USA. http://www.pymol.org. Accessed 25 Feb 2017.

  36. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  37. Prakash A, Borkotoky S, Dubey VK (2022) Targeting two potential sites of SARS-CoV-2 mainprotease through computational drug repurposing. J Biomol Struct Dyn 10:1–11. https://doi.org/10.1080/07391102.2022.2044907

  38. Wang Q, Zhao Y, Chen X, Hong A (2022) Virtual screening of approved clinic drugs with main protease (3CLpro) reveals potential inhibitory effects on SARS-CoV2. J Biomol Struct Dyn 40:685–695. https://doi.org/10.1080/07391102.2020.1817786

    Article  CAS  PubMed  Google Scholar 

  39. R. Kumari, Kumar R, OSDD Consortium, Lynn AM (2014) g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. J Chem Inf Model 54:1951–1962. https://doi.org/10.1021/ci500020m

    Article  CAS  Google Scholar 

  40. Genheden S, Ryde U (2012) Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies. Proteins 80:1326–1342. https://doi.org/10.1002/prot.24029

    Article  CAS  PubMed  Google Scholar 

  41. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T (2019) End-point binding free energy calculation with Mm/Pbsa and Mm/Gbsa: strategies and applications in drug design. Chem Rev 119:9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055

    Article  CAS  PubMed  Google Scholar 

  42. Bai Q, Tan S, Xu T, Liu H, Huang J, Yao X (2021) Molaical: a soft tool for 3d drug design of protein targets by artificial intelligence and classical algorithm. Brief Bioinform 22:bbaa161. https://doi.org/10.1371/journal.pone.0068138

  43. Khaldan A, Bouamrane S, El-mernissi R, Maghat H, Ajana MA, Sbai A, Bouachrine M, Lakhlifi T (2022) In silico design of new α-glucosidase inhibitors through 3D-QSAR study, molecular docking modeling and ADMET analysis. Mor. J Chem 10:22–36. https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i1.31722

  44. Khaldan A, Bouamrane S, El-mernissi R, El khatabi K, Aanouz I, Aggoram A, Sbai A, Bouachrine M, Lakhlifi T, (2021) QSAR study of α-glucosidase inhibitors for benzimidazole bearing bis-Schiff bases using CoMFA, CoMSIA, and molecular docking. Int J Quant Struct-Prop Relat 6:9–24. https://doi.org/10.4018/IJQSPR.2021010102

    Article  CAS  Google Scholar 

  45. Pires DEV, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  47. Amin SA, Banerjee S, Singh S, Qureshi IA, Gayen S, Jha T (2021) First structure-activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: an endeavor on COVID-19 drug discovery. Mol Divers 25:1827–1838. https://doi.org/10.1007/s11030-020-10166-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the molecular mechanics/poisson boltzmann surface area and molecular mechanics/generalized born surface area methods. II. The accuracy of ranking poses generated from docking. J Comput Chem 32:866–877. https://doi.org/10.1002/jcc.21666

    Article  CAS  PubMed  Google Scholar 

  49. Domínguez-Villa FX, Durán-Iturbide NA, Ávila-Zárraga JG (2021) Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: potential inhibitors of SARS CoV-2 main protease. Bioorg Chem 106:104497. https://doi.org/10.1016/j.bioorg.2020.104497

    Article  CAS  PubMed  Google Scholar 

  50. Stader F, Kinvig H, Penny MA, Battegay M, Siccardi M, Marzolini C (2020) Physiologically based pharmacokinetic modelling to identify pharmacokinetic parameters driving drug exposure changes in the elderly. Clin Pharmacokinet 59:383–401. https://doi.org/10.1007/s40262-019-00822-9

    Article  CAS  PubMed  Google Scholar 

  51. Ferraz ERA, Umbuzeiro GA, de-Almeida G, Caloto-Oliveira A, Chequer FMD, Zanoni MVB, Dorta DJ, Oliveira DP, (2011) Differential toxicity of disperse red 1 a disperse red 13 in the Ames test, HepG2 cytotoxicity assay, a Daphnia acute toxicity test. Environ Toxicol 26:489–497. https://doi.org/10.1002/tox.20576

    Article  CAS  PubMed  Google Scholar 

  52. Stader F, Siccardi M, Battegay M, Kinvig H, Penny MA, Marzolini C (2019) Repository describing an aging population to inform physiologically based pharmacokinetic models considering anatomical, physiological, and biological age-dependent changes. Clin Pharmacokinet 58:483–501. https://doi.org/10.1007/s40262-018-0709-7

    Article  CAS  PubMed  Google Scholar 

  53. Hadni H, Elhallaoui M (2020) 3D-QSAR, docking and ADMET properties of aurone analogues as antimalarial agents. Heliyon 6:e03580. https://doi.org/10.1016/j.heliyon.2020.e03580

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We dedicate this work to the “Moroccan Association of Theoretical Chemists” (MATC) for its pertinent help concerning the programs.

Funding

N/A.

Author information

Authors and Affiliations

Authors

Contributions

SB presented the idea, drafted the project, manipulated the data, analyzed the data, and wrote and revised the manuscript. AK carried out the computations, data processing, and writing. HH and REM contributed to conceptualization and data processing. MA conducted the computations of the molecular dynamics (MD) simulations and reviewed and wrote the paper. NA carried out the computations of the MD simulations. HM analyzed the data, justified the study and reviewed and supervised the project. MAA and AS checked the analytical techniques and supervised the results of this study. MB justified the study and reviewed and supervised the project. TL reviewed, supervised, and administered the project.

Corresponding author

Correspondence to Soukaina Bouamrane.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare relevant to this article's content.

Code availability

N/A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouamrane, S., Khaldan, A., Hajji, H. et al. In silico identification of 1,2,4-triazoles as potential Candida Albicans inhibitors using 3D-QSAR, molecular docking, molecular dynamics simulations, and ADMET profiling. Mol Divers 27, 2111–2132 (2023). https://doi.org/10.1007/s11030-022-10546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10546-x

Keywords

Navigation