Skip to main content
Log in

Physiologically Based Pharmacokinetic Modelling to Identify Pharmacokinetic Parameters Driving Drug Exposure Changes in the Elderly

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Medication use is highly prevalent with advanced age, but clinical studies are rarely conducted in the elderly, leading to limited knowledge regarding age-related pharmacokinetic changes.

Objective

The objective of this study was to investigate which pharmacokinetic parameters determine drug exposure changes in the elderly by conducting virtual clinical trials for ten drugs (midazolam, metoprolol, lisinopril, amlodipine, rivaroxaban, repaglinide, atorvastatin, rosuvastatin, clarithromycin and rifampicin) using our physiologically based pharmacokinetic (PBPK) framework.

Methods

PBPK models for all ten drugs were developed in young adults (20–50 years) following the best practice approach, before predicting pharmacokinetics in the elderly (≥ 65 years) without any modification of drug parameters. A descriptive relationship between age and each investigated pharmacokinetic parameter (peak concentration [Cmax], time to Cmax [tmax], area under the curve [AUC], clearance, volume of distribution, elimination-half-life) was derived using the final PBPK models, and verified with independent clinically observed data from 52 drugs.

Results

The age-related changes in drug exposure were successfully simulated for all ten drugs. Pharmacokinetic parameters were predicted within 1.25-fold (70%), 1.5-fold (86%) and 2-fold (100%) of clinical data. AUC increased progressively by 0.9% per year throughout adulthood from the age of 20 years, which was explained by decreased clearance, while Cmax, tmax and volume of distribution were not affected by human aging. Additional clinical data of 52 drugs were contained within the estimated variability of the established age-dependent correlations for each pharmacokinetic parameter.

Conclusion

The progressive decrease in hepatic and renal blood flow, as well as glomerular filtration, rate led to a reduced clearance driving exposure changes in the healthy elderly, independent of the drug.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ortman JM, Velkoff VA, Hogan H. An aging nation: the older population in the United States. Washington, DC: United States Census Bureau, Economics and Statistics Administration; 2014.

    Google Scholar 

  2. European Union—Eurostats. People in the EU—population projections; 2017. https://ec.europa.eu/eurostat/statistics-explained/index.php/People_in_the_EU_-_population_projections#Age_dependency_ratios. Cited 6 Feb 2019.

  3. Jaul E, Barron J. Age-related diseases and clinical and public health implications for the 85 years old and over population. Front Public Health. 2017;5:335–41.

    PubMed  PubMed Central  Google Scholar 

  4. Eurostat. Medicine use statistics; 2014. https://ec.europa.eu/eurostat/statistics-explained/index.php/Medicine_use_statistics. Cited 15 Nov 2018.

  5. US Food and Drug Administration. Diversity in clinical trials; 2018. Available at: https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm535306.htm. Cited 15 Nov 2018.

  6. Stader F, Siccardi M, Battegay M, Kinvig H, Penny MA, Marzolini C. Repository describing an aging population to inform physiologically based pharmacokinetic models considering anatomical, physiological, and biological age-dependent changes. Clin Pharmacokinet. 2019;58(4):483–501.

    PubMed  CAS  Google Scholar 

  7. Polasek TM, Patel F, Jensen BP, Sorich MJ, Wiese MD, Doogue MP. Predicted metabolic drug clearance with increasing adult age. Br J Clin Pharmacol. 2013;75(4):1019–28.

    PubMed  CAS  Google Scholar 

  8. Burt HJ, Riedmaier AE, Harwood MD, Crewe HK, Gill KL, Neuhoff S. Abundance of hepatic transporters in Caucasians: a meta-analysis. Drug Metab Dispos. 2016;44(10):1550–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Schlender J-F, Meyer M, Thelen K, Krauss M, Willmann S, Eissing T, et al. Development of a whole-body physiologically based pharmacokinetic approach to assess the pharmacokinetics of drugs in elderly individuals. Clin Pharmacokinet. 2016;55(12):1573–89.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Chetty M, Johnson TN, Polak S, Salem F, Doki K, Rostami-Hodjegan A. Physiologically based pharmacokinetic modelling to guide drug delivery in older people. Adv Drug Deliv Rev. 2018;135:85–96.

    PubMed  CAS  Google Scholar 

  11. Stader F, Penny MA, Siccardi M, Marzolini C. A comprehensive framework for physiologically based pharmacokinetic modelling in Matlab®. CPT Pharmacomet Syst Pharmacol. 2019;8(7):444–59.

    CAS  Google Scholar 

  12. Rowland-Yeo K, Jamei M, Rostami-Hodjegan A. Predicting drug–drug interactions: application of physiologically based pharmacokinetic models under a systems biology approach. Expert Rev Clin Pharmacol. 2013;6(2):143–57.

    Google Scholar 

  13. Chetty M, Rose RH, Abduljalil K, Patel N, Lu G, Cain T, et al. Applications of linking PBPK and PD models to predict the impact of genotypic variability, formulation differences, differences in target binding capacity and target site drug concentrations on drug responses and variability. Front Pharmacol. 2014;5(258):1–14.

    Google Scholar 

  14. Mukherjee D, Zha J, Menon RM, Shebley M. Guiding dose adjustment of amlodipine after co-administration with ritonavir containing regimens using a physiologically-based pharmacokinetic/pharmacodynamic model. J Pharmacokinet Pharmacodyn. 2018;45(3):443–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Marzolini C, Rajoli R, Battegay M, Elzi L, Back D, Siccardi M. Physiologically based pharmacokinetic modeling to predict drug–drug interactions with efavirenz involving simultaneous inducing and inhibitory effects on cytochromes. Clin Pharmacokinet. 2017;56(4):409–20.

    PubMed  CAS  Google Scholar 

  16. Zhang T. Physiologically based pharmacokinetic modeling of disposition and drug–drug interactions for atorvastatin and its metabolites. Eur J Pharm Sci. 2015;77:216–29.

    PubMed  CAS  Google Scholar 

  17. Jamei M, Bajot F, Neuhoff S, Barter Z, Yang J, Rostami-Hodjegan A, et al. A mechanistic framework for in vitro–in vivo extrapolation of liver membrane transporters: prediction of drug–drug interaction between rosuvastatin and cyclosporine. Clin Pharmacokinet. 2014;53(1):73–87.

    PubMed  CAS  Google Scholar 

  18. Rowland-Yeo K, Walsky R, Jamei M, Rostami-Hodjegan A, Tucker G. Prediction of time-dependent CYP3A4 drug–drug interactions by physiologically based pharmacokinetic modelling: impact of inactivation parameters and enzyme turnover. Eur J Pharm Sci. 2011;43(3):160–73.

    PubMed  CAS  Google Scholar 

  19. Varma MV, Lai Y, Kimoto E, Goosen TC, El-Kattan AF, Kumar V. Mechanistic modeling to predict the transporter-and enzyme-mediated drug–drug interactions of repaglinide. Pharm Res. 2013;30(4):1188–99.

    PubMed  CAS  Google Scholar 

  20. Faulkner J, McGibney D, Chasseaud L, Perry J, Taylor I. The pharmacokinetics of amlodipine in healthy volunteers after single intravenous and oral doses and after 14 repeated oral doses given once daily. Br J Clin Pharmacol. 1986;22(1):21–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Stader F, Kinvig H, Battegay M, Khoo S, Owen A, Siccardi M, et al. Analysis of clinical drug–drug interaction data to predict uncharacterized interaction magnitudes between antiretroviral drugs and co-medications. Antimicrob Agents Chemother. 2018;62(7):1–12.

    Google Scholar 

  22. Zhu Y, Wang F, Li Q, Zhu M, Du A, Tang W, et al. Amlodipine metabolism in human liver microsomes and roles of CYP3A4/5 in the dihydropyridine dehydrogenation. Drug Metab Dispos. 2014;42(2):245–9.

    PubMed  CAS  Google Scholar 

  23. Varma MV, Lai Y, Feng B, Litchfield J, Goosen TC, Bergman A. Physiologically based modeling of pravastatin transporter-mediated hepatobiliary disposition and drug–drug interactions. Pharm Res. 2012;29(10):2860–73.

    PubMed  CAS  Google Scholar 

  24. Almond LM, Mukadam S, Gardner I, Okialda K, Wong S, Hatley O, et al. Prediction of drug–drug interactions arising from CYP3A induction using a physiologically based dynamic model. Drug Metab Dispos. 2016;44(6):821–32.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Ke A, Barter Z, Rowland-Yeo K, Almond L. Towards a best practice approach in PBPK modeling: case example of developing a unified efavirenz model accounting for induction of CYPs 3A4 and 2B6. CPT Pharmacomet Syst Pharmacol. 2016;5(7):367–76.

    CAS  Google Scholar 

  26. Kendall M, Brown D, Yates R. Plasma metoprolol concentrations in young, old and hypertensive subjects. Br J Clin Pharmacol. 1977;4(4):497–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Gautam P, Vargas E, Lye M. Pharmacokinetics of lisinopril (MK521) in healthy young and elderly subjects and in elderly patients with cardiac failure. J Pharm Pharmacol. 1987;39(11):929–31.

    PubMed  CAS  Google Scholar 

  28. Gomez HJ, Cirillo VJ, Moncloa F. The clinical pharmacology of lisinopril. J Cardiovasc Pharmacol. 1987;9:S27–34.

    PubMed  Google Scholar 

  29. Ulm E, Hichens M, Gomez H, Till A, Hand E, Vassil T, et al. Enalapril maleate and a lysine analogue (MK-521): disposition in man. Br J Clin Pharmacol. 1982;14(3):357–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Sagirli O, Ersoy L. An HPLC method for the determination of lisinopril in human plasma and urine with fluorescence detection. J Chromatogr B. 2004;809(1):159–65.

    CAS  Google Scholar 

  31. Acocella G, Pagani V, Marchetti M, Baroni G, Nicolis F. Kinetic studies on rifampicin. I. Serum concentration analysis in subjects treated with different oral doses over a period of two weeks. Chemotherapy. 1971;16(6):356–70.

    PubMed  CAS  Google Scholar 

  32. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5(13):1–10.

    Google Scholar 

  33. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135–59.

    PubMed  PubMed Central  Google Scholar 

  34. Greenblatt DJ, Abernethy DR, Locniskar A, Harmatz JS, Limjuco RA, Shader RI. Effect of age, gender, and obesity on midazolam kinetics. Anesthesiology. 1984;61(1):27–35.

    PubMed  CAS  Google Scholar 

  35. Kirby BJ, Collier AC, Kharasch ED, Whittington D, Thummel KE, Unadkat JD. Complex drug interactions of HIV protease inhibitors 1: inactivation, induction and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab Dispos. 2011;39(6):1070–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Quarterman C, Kendall M, Jack D. The effect of age on the pharmacokinetics of metoprolol and its metabolites. Br J Clin Pharmacol. 1981;11(3):287–94.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Obach RS, Lombardo F, Waters NJ. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab Dispos. 2008;36(7):1385–405.

    PubMed  CAS  Google Scholar 

  38. Abernethy DR, Gutkowska J, Lambert MD. Amlodipine in elderly hypertensive patients: pharmacokinetics and pharmacodynamics. J Cardiovasc Pharmacol. 1988;12:S67–71.

    PubMed  Google Scholar 

  39. Kudo T, Goda H, Yokosuka Y, Tanaka R, Komatsu S, Ito K. Estimation of the contribution of CYP2C8 and CYP3A4 in repaglinide metabolism by human liver microsomes under various buffer conditions. J Pharm Sci. 2017;106(9):2847–52.

    PubMed  CAS  Google Scholar 

  40. Hatorp V, Huang W-C, Strange P. Repaglinide pharmacokinetics in healthy young adult and elderly subjects. Clin Ther. 1999;21(4):702–10.

    PubMed  CAS  Google Scholar 

  41. Gibson DM, Bron NJ, Richens MA, Hounslow NJ, Sedman AJ, Whitfield LR. Effect of age and gender on pharmacokinetics of atorvastatin in humans. J Clin Pharmacol. 1996;36(3):242–6.

    PubMed  CAS  Google Scholar 

  42. Rodvold KA. Clinical pharmacokinetics of clarithromycin. Clin Pharmacokinet. 1999;37(5):385–98.

    PubMed  CAS  Google Scholar 

  43. Acocella G. Clinical pharmacokinetics of rifampicin. Clin Pharmacokinet. 1978;3(2):108–27.

    PubMed  CAS  Google Scholar 

  44. Regårdh C, Landahl S, Larsson M, Lundborg P, Steen B, Hoffmann K-J, et al. Pharmacokinetics of metoprolol and its metabolite α-OH-metoprolol in healthy, non-smoking, elderly individuals. Eur J Clin Pharmacol. 1983;24(2):221–6.

    PubMed  Google Scholar 

  45. Beermann B. Pharmacokinetics of lisinopril. Am J Med. 1988;85(3):25–30.

    PubMed  CAS  Google Scholar 

  46. Jamei M, Dickinson GL, Rostami-Hodjegan A. A framework for assessing inter-individual variability in pharmacokinetics using virtual human populations and integrating general knowledge of physical chemistry, biology, anatomy, physiology and genetics: a tale of ‘bottom-up’ vs ‘top-down’ recognition of covariates. Drug Metab Pharmacokinet. 2009;24(1):53–75.

    PubMed  CAS  Google Scholar 

  47. Lennernäs H. Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003;42(13):1141–60.

    PubMed  Google Scholar 

  48. Vestal RE, McGuire EA, Tobin JD, Andres R, Norris AH, Mezey E. Aging and ethanol metabolism. Clin Pharmacol Ther. 1977;21(3):343–54.

    PubMed  CAS  Google Scholar 

  49. Redolfi A, Borgogelli E, Lodola E. Blood level of cimetidine in relation to age. Eur J Clin Pharmacol. 1979;15(4):257–61.

    PubMed  CAS  Google Scholar 

  50. Abernethy D, Greenblatt D, Shader R. Imipramine and desipramine disposition in the elderly. J Pharmacol Exp Ther. 1985;232(1):183–8.

    PubMed  CAS  Google Scholar 

  51. Castleden CM, George CF. The effect of ageing on the hepatic clearance of propranolol. Br J Clin Pharmacol. 1979;7(1):49–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Jaillon P, Gardin M, Lecocq B, Richard M, Meignan S, Blondel Y, et al. Pharmacokinetics of nalbuphine in infants, young healthy volunteers, and elderly patients. Clin Pharmacol Ther. 1989;46(2):226–33.

    PubMed  CAS  Google Scholar 

  53. Rho JP, Jones A, Woo M, Castle S, Smith K, Bawdon RE, et al. Single-dose pharmacokinetics of intravenous ampicillin plus sulbactam in healthy elderly and young adult subjects. J Antimicrob Chemother. 1989;24(4):573–80.

    PubMed  CAS  Google Scholar 

  54. Cusack B, Kelly J, O’Malley K, Noel J, Lavan J, Horgan J. Digoxin in the elderly: pharmacokinetic consequences of old age. Clin Pharmacol Ther. 1979;25(6):772–6.

    PubMed  CAS  Google Scholar 

  55. Achour B, Russell MR, Barber J, Rostami-Hodjegan A. Simultaneous quantification of the abundance of several cytochrome P450 and uridine 5′-diphospho-glucuronosyltransferase enzymes in human liver microsomes using multiplexed targeted proteomics. Drug Metab Dispos. 2014;42(4):500–10.

    PubMed  Google Scholar 

  56. Parkinson A, Mudra D, Johnson C, Dwyer A, Carroll K. The effects of gender, age, ethnicity, and liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol. 2004;199(3):193–209.

    PubMed  CAS  Google Scholar 

  57. Simon T, Becquemont L, Hamon B, Nouyrigat E, Chodjania Y, Poirier J, et al. Variability of cytochrome P450 1A2 activity over time in young and elderly healthy volunteers. Br J Clin Pharmacol. 2001;52(5):601–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Vestal R, Wood A, Branch R, Shand D, Wilkinson G. Effects of age and cigarette smoking on propranolol disposition. Clin Pharmacol Ther. 1979;26(1):8–15.

    PubMed  CAS  Google Scholar 

  59. Musso CG, Oreopoulos DG. Aging and physiological changes of the kidneys including changes in glomerular filtration rate. Nephron Physiol. 2011;119(Suppl. 1):1–5.

    Google Scholar 

  60. Hockings N, Ajayi A, Reid J. Age and the pharmacokinetics of angiotensin converting enzyme inhibitors enalapril and enalaprilat. Br J Clin Pharmacol. 1986;21(4):341–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Faulkner R, Bohaychuk W, Lanc R, Haynes J, Desjardins R, Yacobi A, et al. Pharmacokinetics of cefixime in the young and elderly. J Antimicrob Chemother. 1988;21(6):787–94.

    PubMed  CAS  Google Scholar 

  62. Kubitza D, Becka M, Roth A, Mueck W. The influence of age and gender on the pharmacokinetics and pharmacodynamics of rivaroxaban—an oral, direct factor Xa inhibitor. J Clin Pharmacol. 2013;53(3):249–55.

    PubMed  Google Scholar 

  63. Soldin OP, Mattison DR. Sex differences in pharmacokinetics and pharmacodynamics. Clin Pharmacokinet. 2009;48(3):143–57.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Rowland Yeo K, Aarabi M, Jamei M, Rostami-Hodjegan A. Modeling and predicting drug pharmacokinetics in patients with renal impairment. Expert Rev Clin Pharmacol. 2011;4(2):261–74.

    PubMed  Google Scholar 

  65. Johnson TN, Boussery K, Rowland-Yeo K, Tucker GT, Rostami-Hodjegan A. A semi-mechanistic model to predict the effects of liver cirrhosis on drug clearance. Clin Pharmacokinet. 2010;49(3):189–206.

    PubMed  CAS  Google Scholar 

  66. Rodighiero V. Effects of cardiovascular disease on pharmacokinetics. Cardiovasc Drugs Ther. 1989;3(5):711–30.

    PubMed  CAS  Google Scholar 

  67. Wooten JM. Pharmacotherapy considerations in elderly adults. South Med J. 2012;105(8):437–45.

    PubMed  Google Scholar 

  68. Albrecht S, Ihmsen H, Hering W, Geisslinger G, Dingemanse J, Schwilden H, et al. The effect of age on the pharmacokinetics and pharmacodynamics of midazolam. Clin Pharmacol Ther. 1999;65(6):630–9.

    PubMed  CAS  Google Scholar 

  69. Goa KL, Balfour JA, Zuanetti G. Lisinopril. A review of its pharmacology and clinical efficacy in the early management of acute myocardial infarction. Drugs. 1996;52(4):564–88.

    PubMed  CAS  Google Scholar 

  70. Leenen FH, Coletta E. Pharmacokinetic and antihypertensive profile of amlodipine and felodipine-ER in younger versus older patients with hypertension. J Cardiovasc Pharmacol. 2010;56(6):669–75.

    PubMed  CAS  Google Scholar 

  71. Kubitza D, Becka M, Voith B, Zuehlsdorf M, Wensing G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther. 2005;78(4):412–21.

    PubMed  CAS  Google Scholar 

  72. Kubitza D, Becka M, Roth A, Mueck W. Dose-escalation study of the pharmacokinetics and pharmacodynamics of rivaroxaban in healthy elderly subjects. Curr Med Res Opin. 2008;24(10):2757–65.

    PubMed  CAS  Google Scholar 

  73. Szadkowska I, Stanczyk A, Aronow WS, Kowalski J, Pawlicki L, Ahmed A, et al. Statin therapy in the elderly: a review. Arch Gerontol Geriatr. 2010;50(1):114–8.

    PubMed  CAS  Google Scholar 

  74. Vass M, Hendriksen C. Medication for older people. Z Gerontol Geriatr. 2005;38(3):190–5.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Stader.

Ethics declarations

Funding

This study was supported by the Swiss National Foundation (Grant number 166204), the OPO Foundation, and the Isaac Dreyfus Foundation. Melissa A. Penny was additionally supported by the Swiss National Foundation Professorship (PP00P3 170702).

Conflict of interest

Felix Stader, Hannah Kinvig, Melissa A. Penny, Manuel Battegay, Marco Siccardi, and Catia Marzolini have no conflicts of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 312 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stader, F., Kinvig, H., Penny, M.A. et al. Physiologically Based Pharmacokinetic Modelling to Identify Pharmacokinetic Parameters Driving Drug Exposure Changes in the Elderly. Clin Pharmacokinet 59, 383–401 (2020). https://doi.org/10.1007/s40262-019-00822-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-019-00822-9

Navigation