Skip to main content
Log in

Magnetically recoverable Fe3O4 nanocatalyst for the synthesis of biodynamically significant 1H-pyrazolo[1,2-b]phthalazine-5,10-diones derivatives and its DFT study

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An environmentally sustainable and proficient method is reported for the synthesis of medicinally important pyrazolo[1,2-b] phthalazine dione derivatives by aqueous micellar medium catalysed by Fe3O4 NPs. Dialkyl acetylenedicarboxylate with isocyanides in the presence of phthalhydrazide is used as starting material. The main advantages of this protocol are the availability of starting materials, short reaction times, green solvents and practical simplicity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Li CJ, Chan TH (2007) Comprehensive organic reactions in aqueous media. Wiley, New York

    Book  Google Scholar 

  2. Chanda A, Fokin VV (2009) Organic synthesis “On Water.” Chem Rev 109(2):725–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Breslow R (1991) Hydrophobic effects on simple organic reactions in water. Acc Chem Res 24(6):159–164

    Article  CAS  Google Scholar 

  4. Chen H, Shi DJ (2010) Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J Comb Chem 12(4):571–576

    Article  CAS  PubMed  Google Scholar 

  5. Safari J, Banitaba SH, Khalili SD (2012) Ultrasound-promoted an efficient method for one-pot synthesis of 2-amino-4,6-diphenylnicotinonitriles in water: a rapid procedure without catalyst. Ultrason Sonochem 19(5):1061–1069

    Article  CAS  PubMed  Google Scholar 

  6. Zou Y, Wu H, Hu Y, Liu H, Zhao X, Ji H, Shi D (2011) A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. Ultrason Sonochem 18(3):708–712

    Article  CAS  PubMed  Google Scholar 

  7. Li C, Chen L (2006) Organic chemistry in water. Chem Soc Rev 35:68–82

    Article  PubMed  Google Scholar 

  8. Indumathi S, Perumal S, Anbananthanb N (2012) A facile eco-friendly three-component protocol for the regio- and stereoselective synthesis of functionalized trans-dihydrofuro[3,2-c]-quinolin-4(2H)-ones. Green Chem 14:3361–3367

    Article  CAS  Google Scholar 

  9. Aplander K, Hidestal O, Katebzadeh K, Lindstrom UM (2006) A green and facile route to γ- and δ-lactones via efficient Pinner-cyclization of hydroxynitriles in water. Green Chem 8:22–24

    Article  CAS  Google Scholar 

  10. Arenas DRM, Bonilla CAM, Kouznetsov VV (2013) Aqueous SDS micelle-promoted acid-catalyzed domino ABB′ imino Diels-Alder reaction: a mild and efficient synthesis of privileged 2-methyl-tetrahydroquinoline scaffolds. Org Biomol Chem 11:3655–3663

    Article  Google Scholar 

  11. Srivastava M, Singh J, Singh SB, Tiwari K, Pathak VK, Singh J (2012) Synthesis of novel fused heterocycle-oxa-aza-phenanthrene and anthracene derivatives via sequential one-pot synthesis in aqueous micellar system. Green Chem 14:901–905

    Article  CAS  Google Scholar 

  12. Sorella GL, Strukul G, Scarso A (2015) Recent advances in catalysis in micellar media. Green Chem 17:644–683

    Article  Google Scholar 

  13. Lu J, Toy PH (2009) Organic polymer supports for synthesis and for reagent and catalyst immobilization. Chem Rev 109(2):815–838

    Article  CAS  PubMed  Google Scholar 

  14. Zhang ZH, Lu HY, Yang SH, Gao JW (2010) Synthesis of 2,3-dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe3O4 nanoparticles in water. J Comb Chem 12(5):643–646

    Article  CAS  PubMed  Google Scholar 

  15. Behbahani FK, El. Rezaee E, Fakhroueian Z (2014) Synthesis of 2-substituted benzimidazoles using 25% Co/Ce-ZrO2 as a heterogeneous and nanocatalyst. Catal Lett 144(12):2184–90

    Article  CAS  Google Scholar 

  16. Biklariana H, Behbahani FK, Fakhroueianb Z (2012) 22% Co/CeO2-ZrO2-catalyzed synthesis of 1, 2, 3, 4-tetrahydro-2-pyrimidinones and –thiones. Lett Org Chem 9:580–584

    Article  Google Scholar 

  17. Behbahani FK, Ziaei P, Fakhroueian Z, Doragi N (2011) An effificient synthesis of 2-arylbenzimidazoles from o-phenylenediamines and arylaldehydes catalyzed by Fe/CeO2–ZrO2 nano fifine particles. Monatsh Chem 142:901–906

    Article  CAS  Google Scholar 

  18. Pankhurst QA, Connolly J, Jones SK, Dobson J (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D 36:R167

    Article  CAS  Google Scholar 

  19. Jordan A, Scholz R, Wust P, Fahling H, Felix R (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419

    Article  CAS  Google Scholar 

  20. Graham DL, Ferreira HA, Freitas PP (2004) Magnetoresistive-based biosensors and biochips. Trends Biotechnol 22(9):455–462

    Article  CAS  PubMed  Google Scholar 

  21. Wang D, He J, Rosenzweig N, Rosenzweig Z (2004) Superparamagnetic Fe2O3 beads−CdSe/ZnS quantum dots core−shell nanocomposite particles for cell separation. Nano Lett 4(3):409–413

    Article  CAS  Google Scholar 

  22. Zhu Y, Fang Y, Kaskel S (2010) Folate-Conjugated Fe3O4@SiO2 hollow mesoporous spheres for targeted anticancer drug delivery. Phys Chem C 114(39):16382–16388

    Article  CAS  Google Scholar 

  23. Neuberger T, Schopf B, Hofmann H, Hofmann M, Rechenbergv BV (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  24. Samiei Z, Amiri SS, Azizi Z (2021) Fe3O4@C@OSO3H as an efcient, recyclable magnetic nanocatalyst in Pechmann condensation: green synthesis, characterization, and theoretical study. Mol Diversity 25:67–86

    Article  CAS  Google Scholar 

  25. Chen Y, Zhang Z, Jiang W, Zhang M, Li Y (2019) RuIII@CMC/Fe3O4 hybrid: an effificient, magnetic, retrievable, self-organized nanocatalyst for green synthesis of pyranopyrazole and polyhydroquinoline derivatives. Mol Diversity 23:421–442

    Article  CAS  Google Scholar 

  26. Hoseinzade K, Mashhadi SAM, Shiri A (2021) An efcient and green one-pot synthesis of tetrahydrobenzo[a] xanthenes, 1,8-dioxo-octahydroxanthenes and dibenzo[a, j] xanthenes by Fe3O4@Agar-Ag as nanocatalyst. Mol Diversity. https://doi.org/10.1007/s11030-021-10368-3

    Article  Google Scholar 

  27. Hu A, Yee GT, Lin W (2005) Magnetically recoverable chiral catalysts immobilized on magnetite nanoparticles for asymmetric hydrogenation of aromatic ketones. J Am Chem Soc 127(36):12486

    Article  CAS  PubMed  Google Scholar 

  28. Senapati KK, Borgohain C, Phukan PJ (2011) Synthesis of highly stable CoFe2O4 nanoparticles and their use as magnetically separable catalyst for Knoevenagel reaction in aqueous medium. J Mol Catal A 339:24–31

    Article  CAS  Google Scholar 

  29. Lim CW, Lee IS (2010) Magnetically recyclable nanocatalyst systems for the organic reactions. Nano Today 5:412–434

    Article  CAS  Google Scholar 

  30. Kohestani T, Alangi SZS, Hossaini Z, Baei MT (2021) Ionic liquid as an efective green media for the synthesis of (5Z, 8Z)-7H-pyrido[2,3-d]azepine derivatives and recycable Fe3O4/TiO2/multi-wall cabon nanotubes magnetic nanocomposites as high performance organometallic nanocatalyst. Mol Diversity. https://doi.org/10.1007/s11030-021-10269-5

    Article  Google Scholar 

  31. Ferdousian R, Behbahani FK, Mohtat B (2022) Synthesis and characterization of Fe3O4@Sal@Cu as a novel, efficient and heterogeneous catalyst and its application in the synthesis of 2-amino-4H-chromenes. Mol Diversity. https://doi.org/10.1007/s11030-022-10391-y

    Article  Google Scholar 

  32. Zhang Y, Chen Y, Westerhoff P, Hristovski K, Crittenden JC (2008) Stability of commercial metal oxide nanoparticles in water. Water Res 42:2204–2212

    Article  CAS  PubMed  Google Scholar 

  33. Panswad D, Sabatini DA, Khaodhiar S (2012) Adsorption, desorption and adsolubilization properties of mixed anionic extended surfactants and a cationic surfactant. J Surfactants Deterg 15:787–795

    Article  CAS  Google Scholar 

  34. Zhu C, Peng HC, Zeng J, Liu J, Gu Z, Xia Y (2012) Facile synthesis of gold wavy nanowires and investigation of their growth mechanism. J Am Chem Soc 134:20234–20237

    Article  CAS  PubMed  Google Scholar 

  35. Marquez M, Kim S, Jung J, Truong N, Teeters D, Grady BP (2007) Factors affecting the synthesis of polymeric nanostructures from template assisted admicellar polymerization. Langmuir 23(20):10008

    Article  CAS  PubMed  Google Scholar 

  36. Pricillaa RB, Bhuvaneshb N, Vidhyaa B, Muruganc S, Nandhakumarb R (2021) Exploration of GO-CuO nanocomposite for its antibacterial properties and potential application as a chemosensor in the sensing of L-Leucine. Inorg Nano-Met Chem. https://doi.org/10.1080/24701556.2021.1956958

    Article  Google Scholar 

  37. Rajput S, Jr P C U, Mohan D (2016) Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. J Colloid Interface Sci 468:334–346

  38. Namia N, Zareyeea D, Ghasemia M, Asgharzadeha A, Forouzanib M, Mirzadb S, Hashemic SM (2017) An efficient method for synthesis of some heterocyclic compounds containing 3-iminoisatin and 1,2,4-triazole using Fe3O4 magnetic nanoparticles. J Sulfur Chem 38(3):279–290

    Article  Google Scholar 

  39. Rostami Z, Rouhanizadeh M, Nami N, Zareyee D (2018) Fe3O4 magnetic nanoparticles (MNPs) as an effective catalyst for synthesis of indole derivatives. Nanochem Res 3(2):142–148

    CAS  Google Scholar 

  40. Gerencser J, Dormon G, Darvas F (2006) Meldrum’s acid in multicomponent reactions: applications to combinatorial and diversity-oriented synthesis. QSAR Comb Sci 25:439–448

    Article  CAS  Google Scholar 

  41. Ramon DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed 44:1602–1634

    Article  CAS  Google Scholar 

  42. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, Oxford, UK

    Google Scholar 

  43. Anastas PT, Williamson T (1998) Green chemistry: frontiers in benign chemical synthesis and process. Oxford University Press, Oxford, UK

    Google Scholar 

  44. Domling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210

    Article  CAS  Google Scholar 

  45. Kappe C O (2000) Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Tricks from an Old Dog. , Acc. Chem. Res. 33:879.

  46. Shokri F, Behbahani FK (2021) Synthesis of Fe3O4@L-proline@SO3H as a novel and reusable acidic magnetic nanocatalyst and its application for the synthesis of N-substituted pyrroles at room temperature under ultrasonic irradiation and without solvent. Inorg Nano-Met Chem. https://doi.org/10.1080/24701556.2021.1963278

    Article  Google Scholar 

  47. Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89

    Article  PubMed  Google Scholar 

  48. Burke MD, Schreiber SL (2004) A planning strategy for diversity-oriented synthesis. Angew Chem Int Ed 43:46–58

    Article  Google Scholar 

  49. Spring DR (2003) Diversity-oriented synthesis; a challenge for synthetic chemists. Org Biomol Chem 1:3867–3870

    Article  CAS  PubMed  Google Scholar 

  50. Strausberg RL, Schreiber SL (2003) From knowing to controlling: a path from genomics to drugs using small molecule probes. Science 300:294–295

    Article  CAS  PubMed  Google Scholar 

  51. Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930

    Article  CAS  PubMed  Google Scholar 

  52. Prakash O, Kumar R, Parkash V (2008) Synthesis and antifungal activity of some new3-hydroxy-2-(1-phenyl-3-aryl-4-pyrazolyl) chromones. Eur J Med Chem 43:435–440

    Article  CAS  PubMed  Google Scholar 

  53. Nakamura T, Sato M, Kakinuma H, Miyata N, Taniguchi K, Bando K, Koda A, Kameo K (2003) Pyrazole and isoxazole derivatives as new, potent, and selective 20-hydroxy-5,8,11,14-eicosatetraenoic acid synthase inhibitors. J Med Chem 46(25):5416–5427

    Article  CAS  PubMed  Google Scholar 

  54. Vera-DiVaio MAF, Freitas ACC, Castro HCA et al (2009) Synthesis, antichagasic in vitro evaluation, cytotoxicity assays, molecular modeling and SAR/QSAR studies of a 2-phenyl-3-(1-phenyl-1H-pyrazol-4-yl)-acrylic acid benzylidene-carbohydrazide series. Bioorg Med Chem 17:295–302

    Article  CAS  PubMed  Google Scholar 

  55. Wei F, Zhao BX, Huang B et al (2006) Design, synthesis, and preliminary biological evaluation of novel ethyl 1-(20-hydroxy-30-aroxypropyl)-3-aryl-1H-pyrazole-5-carboxylate. Bioorg. Med Chem Lett 16:6342–6347

    Article  CAS  Google Scholar 

  56. Genin MJ, Biles C, Keiser BJ et al (2000) Novel 1,5-Diphenylpyrazole Nonnucleoside HIV-1 Reverse Transcriptase Inhibitors with Enhanced Activity versus the Delavirdine-Resistant P236L Mutant: Lead Identification and SAR of 3- and 4-Substituted Derivatives. J Med Chem 43:1034–1040

    Article  CAS  PubMed  Google Scholar 

  57. Lu PC, Sun J, Luo Y, Yang Y, Zhu HL (2010) Design, synthesis, and structure–activity relationships of pyrazole derivatives as potential FabH inhibitors. Bioorg Med Chem Lett 20:4657–4660

    Article  Google Scholar 

  58. Cho N, Kamaura M, Yogo T, Imoto H (2009) Preparation of pyrazole derivatives as improvement of insulin resistance, WO 2009139340, PCT Int Appl.

  59. Xia Y, Dong ZW, Zhao BX, Ge X, Meng N, Shin DS, Miao JY (2007) Synthesis and structure–activity relationships of novel 1-arylmethyl-3-aryl-1H-pyrazole-5-carbohydrazide derivatives as potential agents against A549 lung cancer cells. Bioorg Med Chem 15(22):6893–6899

    Article  CAS  PubMed  Google Scholar 

  60. Ryu CK, Park RE, Ma MY, Nho JH (2007) Synthesis and antifungal activity of 6-arylamino-phthalazine-5, 8-diones and 6, 7-bis (arylthio)-phthalazine-5, 8-diones. Bioorg Med Chem Lett 17(9):2577–2580

    Article  CAS  PubMed  Google Scholar 

  61. El-Sakka S, Soliman AH, Imam A (2009) Synthesis, antimicrobial activity and electron impact of mass spectra of phthalazine-1, 4-dione derivatives. Afinidad 66(540):167–172

    CAS  Google Scholar 

  62. Li J, Zhao YF, Yuan XY, Xu JX, Gong P (2006) Synthesis and anticancer activities of novel 1, 4-disubstituted phthalazines. Molecules 11(7):574–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang L, Guan LP, Sun XY, Wei CX, Chai KY, Quan ZS (2009) Synthesis and anticonvulsant activity of 6-alkoxy-[1, 2, 4] triazolo [3, 4-a] phthalazines. Chem Biol Drug Des 73(3):313–319

    Article  CAS  PubMed  Google Scholar 

  64. Nomoto Y, Obase H, Takai H, Teranishi M, Nakamura J, Kubo K (1990) Studies on cardiotonic agents. II.: synthesis of novel phthalazine and 1, 2, 3-benzotriazine derivatives. Chem Pharm 38:2179–2183

    Article  CAS  Google Scholar 

  65. Watanabe N, Kabasawa Y, Takase Y, Matsukura M, Miyazaki K, Ishihara H, Adachi H (1998) 4-Benzylamino-1-chloro-6-substituted phthalazines: synthesis and inhibitory activity toward phosphodiesterase 5. J Med Chem 41(18):3367–3372

    Article  CAS  PubMed  Google Scholar 

  66. Al-Assar F, Zelenin KN, Lesiovskaya EE, Bezhan IP, Chakchir BA (2002) Synthesis and pharmacological activity of 1-hydroxy-, 1-amino-, and 1-hydrazino-substituted 2, 3-dihydro-1H-pyrazolo [1, 2-a] pyridazine-5, 8-diones and 2, 3-dihydro-1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones. Pharm Chem J 36(11):598–603

    Article  CAS  Google Scholar 

  67. Ghahremanzadeh R, Shakibaei GI, Bazgir A (2008) An efficient one-pot synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives. Synlett 8:1129–1132

    Google Scholar 

  68. Nabid MR, Rezaei SJ, Ghahremanzadeh R, Bazgir (2010) A Ultrasound-assisted one-pot, three-component synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-diones. Ultrason Sonochem 17(1):159–161

  69. Raghuvanshi DS, Singh KN (2011) A highly efficient green synthesis of 1H-pyrazolo [1, 2-b] phthalazine-5, 10-dione derivatives and their photophysical studies. Tetrahedron Lett 52(43):5702–5705

    Article  CAS  Google Scholar 

  70. Vaghei RG, Noori S, Semiromi ZT, Salimi Z (2014) One-pot synthesis of 1H-pyrazolo[1,2-b] phthalazine-5,10-dione derivatives under solventfree conditions. RSC Adv 4:47925

    Article  Google Scholar 

  71. Ghomi JS, Alavi HS, Ziarati A, Teymuri R, Saberi MR (2014) A highly flexible green synthesis of 1H-pyrazolo[1,2-b]phthalazine- 5,10-dione derivatives with CuI nanoparticles as catalyst under solvent-free conditions. Chin Chem Lett 25:401–405

    Article  Google Scholar 

  72. Teimouri MB (2006) One-pot three-component reaction of isocyanides, dialkyl acetylenedicarboxylates and phthalhydrazide: synthesis of highly functionalized 1H pyrazolo[1,2-b]phthalazine-5,10-diones. Tetrahedron 62:10849–10853

    Article  CAS  Google Scholar 

  73. Yoosefian M, Raissi H, Davamdar E, Esmaeili AA, Azaroon M (2012) Synthesis and theoretical study of intramolecularhydrogen bond at two possible positions in pyrazolo[1,2-b]phthalazine. Chin J Chem 30:779–784

    Article  CAS  Google Scholar 

  74. Sagir H, Rai P, Neha S, Singh PK, Tiwari S, Siddiqui IR (2016) S-Nanoparticle/SDS: an efficient and recyclable catalytic system for synthesis of substituted 4 H-pyrido [1, 2-a] pyrimidines in aqueous admicellar medium. RSC Adv 6(77):73924–73932

    Article  CAS  Google Scholar 

  75. Sagir H, Rai P, Singh PK, Siddiqui IR (2016) ZnO nanoparticle–β-cyclodextrin: a recyclable heterogeneous catalyst for the synthesis of 3-aryl-4 H-benzo [1, 4] thiazin-2-amine in water. New J Chem 40(8):6819–6824

    Article  CAS  Google Scholar 

  76. Ansari MD, Sagir H, Yadav VB, Yadav N, Siddiqui IR (2018) Synthesis of benzo [b] furan derivatives via S8-nano particles/β-cyclodextrin: an environmentally friendly approach. ChemistrySelect 3(19):5326–5329

    Article  CAS  Google Scholar 

  77. Ansari MD, Sagir H, Yadav VB, Yadav N, Verma A, Siddiqui IR (2019) Organo-nanocatalysis: an emergent green methodology for construction of bioactive oxazines and thiazines under ultrasonic irradiation. J Mol Struct 1196:54–57

    Article  CAS  Google Scholar 

  78. Maurya SW, Sagir H, Ansari MD, Siddiqui IR (2021) Magnetically retrievable organocatalyst: an emergent green method for the rapid formation of biodynamically significant quinolines. Chem Sel 6(47):13601–13608

    CAS  Google Scholar 

  79. Thathagar MB, Beckers J, Rothenberg G (2004) Palladium-free and ligand-free Sonogashira cross-coupling. Green Chem 6(4):215–218

    Article  CAS  Google Scholar 

  80. Firouzabadi H, Iranpoor N, Gholinejad M, Hoseini J (2011) Magnetite (Fe3O4) Nanoparticles-catalyzed Sonogashira-Hagihara reactions in ethylene glycol under ligand-free conditions. Adv Synth Catal 353(1):125–132

    Article  CAS  Google Scholar 

  81. Ranu BC, Dey R, Chatterjee T, Ahammed S (2012) Copper nanoparticle-catalyzed carbon-carbon and carbon heteroatom bond formation with a greener perspective. Chem Sus Chem 5(1):22–44

    Article  CAS  Google Scholar 

  82. Herzberg G (1945) Molecular Spectra and Molecular Structure, Vol. 2: Infrared and Raman Spectra of Polyatomic Molecules, D. Van Nostrand Company, Inc.

  83. Struve WS (1989) Fundamental of molecular spectroscopy. Wiley, New York

    Google Scholar 

  84. Siadati SA, Nami N, Zardoost MR (2011) A DFT study of solvent effects on the cycloaddition of norbornadiene and 3,4-dihydroisoquinoline-N-oxide. Prog React Kinet Mech 36:252–258

    Article  CAS  Google Scholar 

  85. Shakya S, Khan IM, Ahmad M (2020) Charge transfer complex based real-time colorimetric chemosensor for rapid recognition of dinitrobenzene and discriminative detection of Fe2+ ions in aqueous media and human hemoglobin. J Photochem Photobiol A 392:112402

    Article  CAS  Google Scholar 

  86. Khan MD, Shakya S, Vu HHT, Habte L, Ahn JW (2021) Low concentrated phosphorus sorption in aqueous medium on aragonite synthesized by carbonation of seashells: Optimization, kinetics, and mechanism study. J Environ Manage 280:111652

    Article  CAS  PubMed  Google Scholar 

  87. Khan IM, Shakya S (2019) Exploring colorimetric real-time sensing behavior of a newly designed CT complex toward nitrobenzene and Co2+: spectrophotometric, DFT/TD-DFT, and mechanistic insights. ACS Omega 4(6):9983–9995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge SAIF, Punjab University Chandigarh, for providing all the spectroscopic and analytical data. M.D. Ansari acknowledges CSTUP (Project sanction letter No. CST/D- 2276) for the financial support. N. Yadav is grateful to CSIR, New Delhi, and Ankit Verma acknowledges UGC, New Delhi, for the Senior Research Fellowship (SRF). Manjit Singh acknowledged to IIT (BHU) for research fellowship. I also acknowledge Dr. Sonam Shakya, Department of Chemistry, Aligarh Muslim University, for providing the DFT studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. R. Siddiqui.

Ethics declarations

Conflict of interest

This manuscript has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 812 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.D., Sagir, H., Yadav, V.B. et al. Magnetically recoverable Fe3O4 nanocatalyst for the synthesis of biodynamically significant 1H-pyrazolo[1,2-b]phthalazine-5,10-diones derivatives and its DFT study. Mol Divers 27, 1853–1866 (2023). https://doi.org/10.1007/s11030-022-10532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10532-3

Keywords

Navigation