Skip to main content

Advertisement

Log in

Synthesis, antileishmanial activity and molecular modeling of new 1-aryl/alkyl-3-benzoyl/cyclopropanoyl thiourea derivatives

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Due to the lack of effective vaccine(s) against leishmania and also pharmacokinetics issues of current drugs, it is necessary to discover new antileishmanial agents. Within this particular study, a series of novel 1-aryl/alkyl-3-benzoyl/cyclopropanoyl thiourea derivatives were synthesized (yields 69–84%) and evaluated as antileishmanial compounds (1–11). Synthetic derivatives were subjected to in vitro antileishmanial assessment against Leishmania major promastigotes by colorimetric MTT assay. Compounds 3 (IC50 38.54 µg/mL), 5 (IC50 84.75 µg/mL) and 10 (IC50 70.31 µg/mL) exhibited higher activities after 48 h but were less potent than amphotericin B (IC50 0.19 µg/mL). Antileishmanial activities indicated priority of 5-methyl-4-phenyl thiazole over furyl methyl substituents and 4-phenyl thiazole on thiourea nitrogen. N-myristoyltransferase (NMT) was selected as a validated L. major target for molecular docking studies. In silico results indicated the contribution of hydrophobic, π-stacking and H-bond interactions in binding to target. Most of the synthesized derivatives had lower binding affinities to human NMT (hNMT) than leishmanial enzyme. Docking conformations of top-ranked selective binders (compounds 3 and 5) were subjected to 50 ns MD simulations inside L. major HMT (LmNMT) active site. MD trajectories were used to extract RMSD, RMSF, Rg and durability of intramolecular/intermolecular H-bonds of the complex. It was observed that compound 3 escaped from LmNMT binding site during simulation period and no stable complex could be envisaged. Unlike 3, compound 5 attained stable binding conformation with converged stability parameters. Although mechanistic details for antileishmanial effects of synthesized derivatives are to be explored, current results may be implicated in further structure-guided approach toward potent antileishmanial agents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All the data are available and can be offered on request.

Code availability

Not applicable.

References

  1. WHO (n.d.) Neglected tropical diseases. World Health Organization. https://www.who.int/neglected_diseases/diseases/en. Accessed 10 Oct 2020

  2. The Lancet (2019) 2020: A crucial year for neglected tropical diseases. Lancet 394(10215):2126. https://doi.org/10.1016/S0140-6736(19)33070-3

  3. Tzani M, Barrasa A, Vakali A, Georgakopoulou T, Mellou K, Pervanidou D (2021) Surveillance data for human leishmaniasis indicate the need for a sustainable action plan for its management and control, Greece, 2004 to 2018. Euro Surveill 26(18):2000159. https://doi.org/10.2807/1560-7917.ES.2021.26.18.2000159

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mukhopadhyay D, Dalton JE, Kaye PM, Chatterjee M (2014) Post kala-azar dermal leishmaniasis: an unresolved mystery. Trends Parasitol 30:65–74. https://doi.org/10.1016/j.pt.2013.12.004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ortalli M, Ilari A, Colotti G, De Ionna I, Battista T, Bisi A, Gobbi S, Rampa A, Di Martino RMC, Gentilomi GA, Varani S, Belluti F (2018) Identification of chalcone-based antileishmanial agents targeting trypanothione reductase. Eur J Med Chem 152:527–541. https://doi.org/10.1016/j.ejmech.2018.04.057

    Article  CAS  PubMed  Google Scholar 

  6. Bamorovat M, Sharifi I, Tavakoli Oliaee R, Jafarzadeh A, Khosravi A (2021) Determinants of unresponsiveness to treatment in cutaneous leishmaniasis: a focus on anthroponotic form due to Leishmania tropica. Front Microbiol 12:1143. https://doi.org/10.3389/fmicb.2021.638957

    Article  Google Scholar 

  7. Croft SL, Coombs GH (2003) Leishmaniasis—current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508. https://doi.org/10.1016/j.pt.2003.09.008

    Article  CAS  PubMed  Google Scholar 

  8. Mitropoulos P, Konidas P, Durkin-Konidas M (2010) New world cutaneous leishmaniasis: updated review of current and future diagnosis and treatment. J Am Acad Dermatol 63:309–322. https://doi.org/10.1016/j.jaad.2009.06.088

    Article  PubMed  Google Scholar 

  9. Gervazoni LFO, Barcellos GB, Ferreira-Paes T, Almeida-Amaral EE (2020) Use of natural products in leishmaniasis chemotherapy: an overview. Front Chem 8:1031. https://doi.org/10.3389/fchem.2020.579891

    Article  CAS  Google Scholar 

  10. Razzaghi-Asl N, Sepehri S, Ebadi A, Karami P, Nejatkhah N, Johari-Ahar M (2019) Insights into the current status of privileged N-heterocycles as antileishmanial agents. Mol Divers 24:525–569. https://doi.org/10.1007/s11030-019-09953-4

    Article  CAS  PubMed  Google Scholar 

  11. Ronchetti R, Moroni G, Carotti A, Gioiello A, Camaioni E (2021) Recent advances in urea- and thiourea-containing compounds: focus on innovative approaches in medicinal chemistry and organic synthesis. RSC Med Chem 12:1046–1064. https://doi.org/10.1039/D1MD00058F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Upadhayaya RS, Dixit SS, Földesi A, Chattopadhyaya J (2013) New antiprotozoal agents: their synthesis and biological evaluations. Bioorg Med Chem Lett 23(9):2750–2758. https://doi.org/10.1016/j.bmcl.2013.02.054

    Article  CAS  PubMed  Google Scholar 

  13. Díaz M, de Lucio H, Moreno E, Espuelas S, Aydillo C, Ruiz AJ, Toro MA, Gutiérrez KJ, Merino VM, Cornejo A, Palop JA, Sanmartín C, Plano D (2019) Synthesis and leishmanicidal activity of novel urea, thiourea, and selenourea derivatives of diselenides. Antimicrob Agents Chemother 63(5):e02200-e2218. https://doi.org/10.1128/AAC.02200-18

    Article  PubMed  PubMed Central  Google Scholar 

  14. Viana GM, Soares DC, Santana MV, do Amaral LH, Meireles PW, Nunes RP, da Silva LCRP, Aguiar LCS, Rodrigues CR, de Sousa VP, Castro HC, Abreu PA, Sathler PC, Saraiva EM, Cabral LM (2017) Antileishmanial thioureas: synthesis, biological activity and in silico evaluations of new promising derivatives. Chem Pharm Bull (Tokyo) 65(10):911–919. https://doi.org/10.1248/cpb.c17-00293

    Article  CAS  PubMed  Google Scholar 

  15. Mohammadi-ghalehbin B, Najafi S, Razzaghi-Asl N (2020) Synthesis and antileishmanial effect of a few cyclic and non-cyclic n-aryl enamino amide derivatives. Res Pharm Sci 15(4):340–349. https://doi.org/10.4103/1735-5362.293512

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rauf MK, Yaseen S, Badshah A, Zaib S, Arshad R, Imtiaz-Ud-Din TMN, Iqbal J (2015) Synthesis, characterization and urease inhibition, in vitro anticancer and antileishmanial studies of Ni(II) complexes with N, N, N′-trisubstituted thioureas. J Biol Inorg Chem 20(3):541–554. https://doi.org/10.1007/s00775-015-1239-5

    Article  CAS  PubMed  Google Scholar 

  17. White CA Jr (2004) Nitazoxanide: a new broad spectrum antiparasitic agent. Expert Rev Anti-infect Ther 2(1):43–49. https://doi.org/10.1586/14787210.2.1.43

    Article  CAS  PubMed  Google Scholar 

  18. Mohammadi-Ghalehbin B, Sepehri S, Nejatkhah N, Safari S, Hosseinali Z, Sabour S, Razzaghi-Asl N (2022) Synthesis, antileishmanial activity and molecular docking study of new 3, 4 dihydropyrimidinones/thiones. Pharm Chem J 55(10):1052–1058. https://doi.org/10.1007/s11094-021-02536-4

    Article  CAS  Google Scholar 

  19. Brannigan JA, Roberts SM, Bell AS, Hutton JA, Hodgkinson MR, Tate EW, Leatherbarrow RJ, Smith DF, Wilkinson AJ (2014) Diverse modes of binding in structures of Leishmania major N-myristoyltransferase with selective inhibitors. IUCrJ 1(Pt 4):250–260. https://doi.org/10.1107/S2052252514013001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Niapour A, Amirshahrokhi K, Azari Rad M, Mohammadi-Ghalehbin B (2019) Evaluation of the paraquat effect on Leishmania major promastigotes and HUVECs viability under in vitro condition. J Ardabil Univ Med Sci 19(1):61–70. https://doi.org/10.29252/jarums.19.1.61

    Article  Google Scholar 

  21. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sanner M (1999) Python: a programming language for software integration and development. J Mol Graph Model 17(1):57–61

    CAS  PubMed  Google Scholar 

  23. Bell AS, Yu Z, Hutton JA, Wright MH, Brannigan JA, Paape D, Roberts SM, Sutherell CL, Ritzefeld M, Wilkinson AJ, Smith DF, Leatherbarrow RJ, Tate EW (2020) Novel thienopyrimidine inhibitors of Leishmania N-myristoyltransferase with on-target activity in intracellular amastigotes. J Med Chem 63(14):7740–7765. https://doi.org/10.1021/acs.jmedchem.0c00570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Qiu W, Hutchinson A, Wernimont A, Lin Y-H, Kania A, Ravichandran M, Kozieradzki I, Cossar D, Schapira M, Arrowsmith CH, Bountra C, Weigelt J, Edwards AM, Wyatt PG, Ferguson MAJ, Frearson JA, Brand SY, Robinson DA, Bochkarev A, Hui, R (Latest revision on 2011) Crystal structure of human type-I N-myristoyltransferase with bound myristoyl-CoA and inhibitor. https://doi.org/10.2210/pdb3jtk/pdb

  25. Ghanbarimasir Z, Bekhradnia A, Rafiei A, Razzaghi-Asl N, Kardan M (2018) Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochim Acta A 194:21–35. https://doi.org/10.1016/j.saa.2017.12.063

    Article  CAS  Google Scholar 

  26. Schöning-Stierand K, Diedrich K, Fährrolfes R, Flachsenberg F, Meyder A, Nittinger E, Steinegger R, Rarey M (2020) ProteinsPlus: interactive analysis of protein–ligand binding interfaces. Nucleic Acids Res 48(W1):W48–W53. https://doi.org/10.1093/nar/gkaa235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717

    Article  PubMed  PubMed Central  Google Scholar 

  28. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ (2005) GROMACS: fast, flexible, and free. J Comput Chem 26(16):1701–1718. https://doi.org/10.1002/jcc.20291

    Article  CAS  PubMed  Google Scholar 

  29. Schüttelkopf AW, van Aalten DM (2004) PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr D 60:1355–1356. https://doi.org/10.1107/S0907444904011679

    Article  CAS  PubMed  Google Scholar 

  30. Berendsen HJC, Postma JPM, Van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. D. Reidel Publishing Company, Dordrecht, pp 331–342. https://doi.org/10.1007/978-94-015-7658-1_21

    Chapter  Google Scholar 

  31. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7190. https://doi.org/10.1063/1.328693

    Article  CAS  Google Scholar 

  32. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3c1463::AID-JCC4%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  33. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log (N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  34. Resh MD (2012) Targeting protein lipidation in disease. Trends Mol Med 18:206–214. https://doi.org/10.1016/j.molmed.2012.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Price HP, Güther ML, Ferguson MA, Smith DF (2010) Myristoyl-CoA: protein N-myristoyltransferase depletion in trypanosomes causes a virulence and endocytic defects. Mol Biochem Parasitol 169(1):55–58. https://doi.org/10.1016/j.molbiopara.2009.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Price HP, Menon MR, Panethymitaki C, Goulding D, McKean PG, Smith DF (2003) Myristoyl-CoA: protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem 278(9):7206–7214. https://doi.org/10.1074/jbc.M211391200

    Article  CAS  PubMed  Google Scholar 

  37. Brannigan JA, Smith BA, Yu Z, Brzozowski AM, Hodgkinson MR, Maroof A, Price HP, Meier F, Leatherbarrow RJ, Tate EW, Smith DF, Wilkinson AJ (2010) N-myristoyltransferase from Leishmania donovani: structural and functional characterization of a potential drug target for visceral leishmaniasis. J Mol Biol 396:985–999. https://doi.org/10.1016/j.jmb.2009.12.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ferreira de Freitas R, Schapira M (2017) A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm 8(10):1970–1981. https://doi.org/10.1039/C7MD00381A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Novoseletsky VN, Pyrkov TV, Efremov RG (2010) Analysis of hydrophobic interactions of antagonists with the beta2-adrenergic receptor. SAR QSAR Environ Res 21(1):37–55. https://doi.org/10.1080/10629360903560637

    Article  CAS  PubMed  Google Scholar 

  40. Rackham MD, Yu Z, Brannigan JA, Heal WP, Paape D, Barker KV, Wilkinson AJ, Smith DF, Leatherbarrow RJ, Tate EW (2015) Discovery of high affinity inhibitors of Leishmania donovani N-myristoyltransferase. Med Chem Commun 6:1761–1766. https://doi.org/10.1039/C5MD00241A

    Article  CAS  Google Scholar 

  41. Liu K, Watanabe E, Kokubo H (2017) Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. J Comput Aided Mol Des 31(2):201–211. https://doi.org/10.1007/s10822-016-0005-2

    Article  CAS  PubMed  Google Scholar 

  42. Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as an indicator of protein structure compactness. Mol Biol 42:623–628. https://doi.org/10.1134/S0026893308040195

    Article  CAS  Google Scholar 

  43. Pace CN, Fu H, Lee Fryar K, Landua J, Trevino SR, Schell D, Thurlkill RL, Imura S, Scholtz JM, Gajiwala K, Sevcik J, Urbanikova L, Myers JK, Takano K, Hebert EJ, Shirley BA, Grimsley GR (2014) Contribution of hydrogen bonds to protein stability. Protein Sci 23(5):652–661. https://doi.org/10.1002/pro.2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The research leading to offered results received funding from Ardabil University of Medical Sciences (ARUMS) under Grant Number IR.ARUMS.REC.1398.595.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally in this work (concept, design, definition of intellectual content, literature search, experimental studies, data acquisition, data analysis, statistical analysis, manuscript preparation, manuscript editing and manuscript review).

Corresponding author

Correspondence to Nima Razzaghi-Asl.

Ethics declarations

Conflict of interest

Authors declare to have no conflicts of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 174 kb)

Supplementary file2 (PDF 65 kb)

Supplementary file3 (PDF 32 kb)

Supplementary file4 (PDF 37 kb)

Supplementary file5 (PDF 675 kb)

Supplementary file6 (PDF 32 kb)

Supplementary file7 (PDF 37 kb)

Supplementary file8 (PDF 488 kb)

Supplementary file9 (PDF 32 kb)

Supplementary file10 (PDF 159 kb)

Supplementary file11 (PDF 476 kb)

Supplementary file12 (PDF 32 kb)

Supplementary file13 (PDF 206 kb)

Supplementary file14 (PDF 681 kb)

Supplementary file15 (PDF 33 kb)

Supplementary file16 (PDF 152 kb)

Supplementary file17 (PDF 493 kb)

Supplementary file18 (PDF 33 kb)

Supplementary file19 (PDF 187 kb)

Supplementary file20 (PDF 670 kb)

Supplementary file21 (PDF 31 kb)

Supplementary file22 (PDF 152 kb)

Supplementary file23 (PDF 652 kb)

Supplementary file24 (PDF 32 kb)

Supplementary file25 (PDF 144 kb)

Supplementary file26 (PDF 643 kb)

Supplementary file27 (PDF 32 kb)

Supplementary file28 (PDF 153 kb)

Supplementary file29 (PDF 675 kb)

Supplementary file30 (PDF 32 kb)

Supplementary file31 (PDF 141 kb)

Supplementary file32 (PDF 621 kb)

Supplementary file33 (PDF 32 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi-Ghalehbin, B., Shiran, J.A., Gholizadeh, N. et al. Synthesis, antileishmanial activity and molecular modeling of new 1-aryl/alkyl-3-benzoyl/cyclopropanoyl thiourea derivatives. Mol Divers 27, 1531–1545 (2023). https://doi.org/10.1007/s11030-022-10508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10508-3

Keywords

Navigation