Skip to main content
Log in

Diastereo- and regioselective petasis aryl and allyl boration of ninhydrins towards synthesis of functionalized indene-diones and dihydrobenzoindeno-oxazin-ones

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Petasis aryl and allyl borations were accomplished using substituted ninhydrins, boronic acids or 2-allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane and 1,2-aminophenols in Hexafluoroisopropanol (HFIP) without any catalysts to synthesize different aryl and allyl derivatives of ninhydrins. The nature of substitution in the boronic acids and 1,2-amino phenols was the key factor in determining the diastereo-regioselectivity and the type of product distributions. The products were isolated and characterized by HMBC, HSQC, 1H, 13C NMR experiments and X-ray single crystallographic analysis. A probable reaction pathway involves in situ formation of acyclic and cyclic ninhydrin-amino alcohol adducts, with the positioned hydroxyl group determining the stereo-regioselective outcome via tetracoordinated boron intermediates.

Graphical abstract

A metal free diastereo- and regioselective Petasis aryl and allyl boration of ninhydrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3

Similar content being viewed by others

References

  1. Petasis NA, Akritopoulou I (1993) The boronic acid mannich reaction: a new method for the synthesis of geometrically pure allylamines. Tetrahedron Lett 34:583–586. https://doi.org/10.1016/S0040-4039(00)61625-8

    Article  CAS  Google Scholar 

  2. Petasis NA, Zavialov I (1997) A new and practical synthesis of α-amino acids from alkenyl boronic acids. J Am Chem Soc 119:445–446. https://doi.org/10.1021/ja963178n

    Article  CAS  Google Scholar 

  3. Petasis NA, Boral S (2001) One-step three-component reaction among organoboronic acids, amines and salicylaldehydes. Tetrahedron Lett 42:539–542. https://doi.org/10.1016/S0040-4039(00)02014-1

    Article  CAS  Google Scholar 

  4. Muncipinto G, Moquist PN, Schreiber SL, Schaus SE (2011) Catalytic diastereoselective petasis reactions. Angew Chem Int Ed 50:8172–8175. https://doi.org/10.1002/anie.201103271

    Article  CAS  Google Scholar 

  5. Li Y, Xu M-H (2012) Lewis acid promoted highly diastereoselective PetasisBorono-Mannich reaction: efficient synthesis of optically active β, γ-unsaturated α-amino acids. Org Lett 14:2062–2065. https://doi.org/10.1021/ol300581n

    Article  CAS  PubMed  Google Scholar 

  6. Chevis PJ, Wangngae S, Thaima T, Carroll AW, Willis AC, Pattarawarapan M, Pyne SG (2019) Highly diastereoselective synthesis of enantioenriched anti-α-allyl-β-fluoroamines. ChemComm 55:6050–6053. https://doi.org/10.1039/C9CC02765C

    Article  CAS  Google Scholar 

  7. Jiang Y, Schaus SE (2017) Asymmetric Petasis Borono-Mannich allylation reactions catalyzed by chiral biphenols. Angew Chem Int Ed 56:1544–1548. https://doi.org/10.1002/anie.201611332

    Article  CAS  Google Scholar 

  8. Kavouris J, Kavouris K, Wambua V M, Demerzhan R, Moquist P, Vetticatt M, Schaus S (2020) Chiral amino alcohols via catalytic enantioselective Petasis Borono-Mannich Reactions. Chem Catal. https://doi.org/10.26434/chemrxiv.12479654.v1

  9. Jiang Y, Schaus SE, Thomson RJ (2017) Asymmetric traceless PetasisBorono-Mannich reactions of enals: reductive transposition of allylic diazenes. Angew Chem Int Ed 56:16631–16635. https://doi.org/10.1002/anie.201708784

    Article  CAS  Google Scholar 

  10. Han W-Y, Zuo J, Zhang X-M, Yuan W-C (2013) Enantioselective Petasis reaction among salicylaldehydes, amines, and organoboronic acids catalyzed by BINOL. Tetrahedron 69:537–541. https://doi.org/10.1016/j.tet.2012.11.043

    Article  CAS  Google Scholar 

  11. Han W-Y, Wu Z-J, Zhang X-M, Yuan W-C (2012) Enantioselective organocatalytic three-component petasis reaction among salicylaldehydes, amines, and organoboronic acids. Org Lett 14:976–979. https://doi.org/10.1021/ol203109a

    Article  CAS  PubMed  Google Scholar 

  12. Huo H-X, Duvall JR, Huanga M–Y, Hong R (2014) Catalytic asymmetric allylation of carbonyl compounds and imines with allylic boronates. Org Chem Front 1:303–320. https://doi.org/10.1039/C3QO00081H

    Article  CAS  Google Scholar 

  13. Carrera DE (2017) The acid promoted Petasis reaction of organotrifluoroborates with imines and enamines. ChemComm 53:11185–11188. https://doi.org/10.1039/C7CC04397J

    Article  CAS  Google Scholar 

  14. Yi J, Badir SO, Alam R, Molander GA (2019) Photoredox-catalyzed multicomponent petasis reaction with alkyltrifluoroborates. Org Lett 21:4853–4858. https://doi.org/10.1021/acs.orglett.9b01747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Petasis NA, Zavialov IA (1988) Highly stereocontrolled one-step synthesis of anti-β-amino alcohols from organoboronic acids, amines, and α-hydroxy aldehydes. J Am Chem Soc 120:11798–11799. https://doi.org/10.1021/ja981075u

    Article  Google Scholar 

  16. Au CWG, Pyne SG (2006) Asymmetric synthesis of anti-1,2-amino alcohols via the Borono-Mannich reaction: a formal synthesis of (-)-swainsonine. J Org Chem 71:7097–7099. https://doi.org/10.1021/jo0610661

    Article  CAS  PubMed  Google Scholar 

  17. Thaima T, Pyne SG (2015) Regioselective and diastereoselective Borono-Mannich reactions with Pinacol allenylboronate. Org Lett 17:778–781. https://doi.org/10.1021/ol503424k

    Article  CAS  PubMed  Google Scholar 

  18. Yus M, González-Gómez JC, Foubelo F (2013) Diastereoselective allylation of carbonyl compounds and imines: application to the synthesis of natural products. Chem Rev 113:5595–5698. https://doi.org/10.1021/cr400008h

    Article  CAS  PubMed  Google Scholar 

  19. Carroll AW, Savaspun K, Willis AC, Hoshino M, Kato A, Pyne SG (2018) Total synthesis of natural hyacinthacine C5 and six related hyacinthacine C5 epimers. J Org Chem 83:5558–5576. https://doi.org/10.1021/acs.joc.8b00585

    Article  CAS  PubMed  Google Scholar 

  20. Bouillon ME, Pyne SG (2014) Diastereoselective concise syntheses of the polyhydroxylated alkaloids DMDP and DAB. Tetrahedron Lett 55:475–478. https://doi.org/10.1016/j.tetlet.2013.11.068

    Article  CAS  Google Scholar 

  21. Ghosal P, Shaw AK (2012) A Chiron approach to aminocytitols by Petasis-Borono-Mannich reaction: formal synthesis of (+)-conduramine E and (−)-conduramine E. J Org Chem 77:7627–7632. https://doi.org/10.1021/jo300804d

    Article  CAS  PubMed  Google Scholar 

  22. Neto I, Andrade J, Fernandes AS, Reis CP, Salunke JK, Priimagi A, Candeias NR, Rijo P (2016) Multicomponent petasis-boronomannich preparation of alkylaminophenols and antimicrobial activity studies. Chem Med Chem 11:2015–2023. https://doi.org/10.1002/cmdc.201600244

    Article  CAS  PubMed  Google Scholar 

  23. Montalbano F, Cal PMSD, Carvalho MABR, Goncalves LM, Lucas SD, Guedes RC, Veiros LF, Moreira R, Gois PMP (2013) Discovery of new heterocycles with activity against human neutrophile elastase based on a boron promoted one-pot assembly reaction. Org Biomol Chem 11:4465–4472. https://doi.org/10.1039/C3OB40614H

    Article  CAS  PubMed  Google Scholar 

  24. Zhang X, Jiang W, Jacutin-Porte S, Glunz PW, Zou Y, Cheng X, Nirschi AH, Wurtz NR, Luettgen JM, Rendiana AR, Luo G, Harper TM, Wei A, Anumula R, CheneyD L, Knabb RM, Wong PC, WexlerR R, Priestley ES (2014) Design and synthesis of phenylpyrrolidine phenylglycinamides as highly potent and selective TF-FVIIa inhibitors. ACS Med Chem Lett 5:188–192. https://doi.org/10.1021/ml400453z

    Article  CAS  PubMed  Google Scholar 

  25. Rimpilainen T, Andrade J, Nunes A, Ntungwe E, Fernandes AS, Vale JR, Rodrigues J, Gomes JP, Rijo P, Candeias NR (2018) ACS Omega 3:16191–16202. https://doi.org/10.1021/acsomega.8b02381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doan P, Karjalainen A, Chandraseelan JG, Sandberg O, Yli-Harja O, Rosholm T, Franzen R, Candeias NR, Kandhavelu M (2016) Synthesis and biological screening for cytotoxic activity of N-substituted indolines and morpholines. Eur J Med Chem 120:296–303. https://doi.org/10.1016/j.ejmech.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  27. Natarajan K, Jesin CPI, Mercy AAH, Nandi GC (2021) A metal-free Petasis reaction towards the synthesis of N-(α-substituted)alkylsulfoximines/sulfonimidamides. Org Biomol Chem 19:7061–7065. https://doi.org/10.1039/D1OB01181B

    Article  CAS  PubMed  Google Scholar 

  28. Candeias NR, Montalbano F, Cal PMSD, Gois PMP (2010) Boronic acids and esters in the petasis-borono mannich multicomponent reaction. Chem Rev 110:6169–6093. https://doi.org/10.1021/cr100108k

    Article  CAS  PubMed  Google Scholar 

  29. Wu P, Nielsen TE (2018) Petasis three-component reactions for the synthesis of diverse heterocyclic scaffolds. Drug Discovery Today 29:27–33. https://doi.org/10.1016/j.ddtec.2018.06.010

    Article  PubMed  Google Scholar 

  30. Guerrera CA, Ryder TR (2016) The Petasis Borono-Mannich multicomponent reaction. ACS symposium series (boron reagents in synthesis) Chapter 9. 1236:275–311. https://doi.org/10.1021/bk-2016-1236.ch009

  31. Ramadhar TR, Batey RA (2011) Recent advances in nucleophilic addition reactions of organoboronic acids and their derivatives to unsaturated C–N functionalities. Boronic acids: preparation and applications in organic synthesis Wiley-VCH, 2nd edn. 2:427–477. https://doi.org/10.1002/9783527639328.ch9

  32. Carboni B, Berrée F (2013) Third component boronic acid (Petasis reaction), Müller T.J.; Multicomponent reactions. Sci. Synth. 1:219–259

    Google Scholar 

  33. Wu P, Givskov M, Nielsen T (2019) Reactivity and synthetic applications of multicomponent Petasis reactions. Chem Rev 119:11245–11290. https://doi.org/10.1021/acs.chemrev.9b00214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hwang J, Borgelt L, Wu P (2020) Multicomponent Petasis reaction for the synthesis of functionalized 2-aminothiophenes and thienodiazepines. ACS Comb Sci 22:495–499. https://doi.org/10.1021/acscombsci.0c00173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mandai H, Murota K, Suga S (2012) Studies on the Petasis reaction of 2-pyridinecarbaldehyde derivatives and its products. Heterocycles 85:1655–1669. https://doi.org/10.3987/COM-12-12500

    Article  CAS  Google Scholar 

  36. Lenci E, Puglielli RB, Bucaletti E, Innocenti R, Trabocchi A (2020) A glucose-derived α-hydroxy aldehyde for the petasis reaction: facile access to polyfunctional δ-amino acids. Eur J Org Chem 2020:4227–4234. https://doi.org/10.1002/ejoc.202000600

    Article  CAS  Google Scholar 

  37. Mandai H, Murota K, Sakai T (2010) An improved protocol for Petasis reaction of 2-pyridinecarbaldehydes. Tetrahedron Lett 51:4779–4782. https://doi.org/10.1016/j.tetlet.2010.07.039

    Article  CAS  Google Scholar 

  38. Schlienger N, Bryce MR, Hansen TK (2000) Heterocylic aldehydes as novel components in the boronic Mannich reaction. Tetrahedron Lett 41:1303–1305. https://doi.org/10.1016/S0040-4039(99)02273-X

    Article  CAS  Google Scholar 

  39. Chouguiat L, Boulcina R, Carboni B, Demonceau A, Debache A (2014) A new and efficient one-pot synthesis of 2-hydroxy-1,4-dihydroxybenzoxazines via a three-component Petasis reaction. Tetrahedron Lett 55:5124–5128. https://doi.org/10.1016/j.tetlet.2014.07.093

    Article  CAS  Google Scholar 

  40. Wang Q, Finn MG (2000) 2H-chromenes from salicylaldehydes by a catalytic petasis reaction. Org Lett 2:4063–4065. https://doi.org/10.1021/ol006710r

    Article  CAS  PubMed  Google Scholar 

  41. Puentes CO, Kouznetsov V (2002) J Het Chem 39:595–614. https://doi.org/10.1002/jhet.5570390401

    Article  CAS  Google Scholar 

  42. Yus M, González-Gómez JC, Foubelo F (2013) Diastereoselective allylation of carbonyl compounds and imines: application to the synthesis of natural products. Chem Rev 13:5595–5698. https://doi.org/10.1021/cr400008h

    Article  CAS  Google Scholar 

  43. Ramadhar R, Batey RA (2011) Allylation of imines and their derivatives with organoboron reagents: stereocontrolled synthesis of homoallylic amines. Synthesis 9:1321–1346. https://doi.org/10.1055/S-0030-1258434

    Article  Google Scholar 

  44. Kuramoto M, Tong C, Yamada K, Chiba T, Hayashi Y, Uemura D (1996) Halichlorine, an inhibitor of VCAM-1 induction from the marine sponge Halichondriaokadai Kadata. Tetrahedron Lett 37:3867–3870. https://doi.org/10.1016/0040-4039(96)00703-4

    Article  CAS  Google Scholar 

  45. Trimurtulu G, Ohtani I, Patterson GML, Moore RE, Corbett TH, Valeriote FA, Demchiko L (1994) Total structures of cryptophycins, potent antitumor depsipeptides from the blue-green Alga Nostoc sp strain GSV 224. J Am Chem Soc 116:4729–4737. https://doi.org/10.1021/ja00090a020

    Article  CAS  Google Scholar 

  46. Schmidt U, Schmidt J (1994) Synthesis the total synthesis of eponemycin. Synthesis 1994:300–304. https://doi.org/10.1055/s-1994-25464

    Article  Google Scholar 

  47. Lin Z-W, Zhou Y, Zhao Z-N, Zhao Y, Liu J, Huang Y-Y (2019) 1,2-Amino alcohol-dependent Petasisallylboration for racemicand chiral homoallylamines. Org Chem Front 6:751–755. https://doi.org/10.1039/C8QO01428K

    Article  CAS  Google Scholar 

  48. Yang Y, Cao Z-H, Zhou Y, Cheng F, Lin Z–W, Ou, Z, Yuan Y, Huang Y–Y (2018) Petasis-type gem-difluoroallylation reactions assisted by the neighboring hydroxyl group in amines. Org Lett 20:2585–2589. https://doi.org/10.1021/acs.orglett.8b00721

    Article  CAS  PubMed  Google Scholar 

  49. Tan Q, Wang X, Xiong Y, Zhao Z, Li L, Tang P, Zhang M (2017) Chiral amino alcohol accelerated and stereocontrolled allylboration of iminoisatins: highly efficient construction of adjacent quaternary stereogenic centers. Angew Chem Int Ed 56:4829–4833. https://doi.org/10.1002/anie.201700581

    Article  CAS  Google Scholar 

  50. Sengupta A, Maity S, Mondal A, Ghosh P, Rudra S, Mukhopadhyay C (2019) Pseudo five component reaction towards densely functionalized spiro[indole-3,2′-pyrrole] by picric acid, an efficient syn-diastereoselective catalyst: insight into the diastereoselection on C(sp3)–C(sp3) axial conformation. Org Biomol Chem 17:1254–1265. https://doi.org/10.1039/C8OB02849D

    Article  CAS  PubMed  Google Scholar 

  51. Ziarani GM, Lashgari N, Azimian F, Kruger HG, Gholamzadeh P (2015) Ninhydrin in synthesis of heterocyclic compounds. ARKIVOC 4:1–139. https://doi.org/10.3998/ark.5550190.p008.905

    Article  Google Scholar 

  52. Das S (2020) Recent applications of ninhydrin in multicomponent reactions. RSC Adv 10:18875–18906. https://doi.org/10.1039/D0RA02930K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mousavi SH, Mohammadizadeh MR, Roshan Z, Jamaleddini A, Arimitsu S (2020) One-pot synthesis of spiro-isobenzofuran compounds via the sequential condensation/oxidation reaction of ninhydrin with 4-amino-1,2-naphthoquinones/2-amino-1,4-naphthoquinones under mild conditions. ACS Omega 5:18273–18288. https://doi.org/10.1021/acsomega.0c01934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Das S, Dutta A (2020) Ninhydrin adducts as valid synthon in organic synthesis: a review. Chem Select 5:11361–11377. https://doi.org/10.1002/slct.202003245

    Article  CAS  Google Scholar 

  55. Okpekon T, Millot M, Champy P, Gleye C, Yolou S, Bories C, Loiseau P, Laurens LA, Hocquemiller R (2009) A novel 1-indanone isolated from Uvaria afzelii roots. Nat Prod Res 23:909–915. https://doi.org/10.1080/14786410802497240

    Article  CAS  PubMed  Google Scholar 

  56. Yang Y, Philips D, Pan S (2011) A concise synthesis of paucifloral f and related indanone analogues via palladium-catalyzed α-arylation. J Org Chem 76:1902–19065. https://doi.org/10.1021/jo102298p

    Article  CAS  PubMed  Google Scholar 

  57. Azuma T, Tanaka Y, Kikuzaki H (2008) Phenolic glycosides from Kaempferia parviflora. Phytochemistry 69:2743–2748. https://doi.org/10.1016/j.phytochem.2008.09.001

    Article  CAS  PubMed  Google Scholar 

  58. Ruchirawat S, Thasana N (2001) The first synthesis of Wrightiadione. Synth Commun 31:1765–1769. https://doi.org/10.1081/SCC-100104406

    Article  CAS  Google Scholar 

  59. Zhang J, El-Shabrawy A-RO, El-Shanawany MA, Schiff PL Jr, Slatkin DJ (1987) New azafluorene alkaloids from oxandraxylopioides. J Nat Prod 50:800–806. https://doi.org/10.1021/np50053a005

    Article  CAS  Google Scholar 

  60. Wang S, Kraus GA (2019) Annulation of 5-phenylthiobutenolides and first synthesis of (±)-Indanostatin. Synlett 30:353–355. https://doi.org/10.1055/s-0037-1611462

    Article  CAS  Google Scholar 

  61. Sahu KB, Banerjee M, Ghosh S, Maity A, MondalS PR, Hazra A, Karmakar S, Samanta A, Mondal NB (2013) I2 catalyzed Friedel-Crafts alkylation reaction of substituted anilines with ninhydrin: formation of novel products and their antimicrobial evaluation. Med Chem Res 22:2023–2037. https://doi.org/10.1007/s00044-012-0202-z

    Article  CAS  Google Scholar 

  62. Garrido F, Ibanez J, Gonalons E, Giraldez A (1975) Synthesis and laxative properties of some derivative esters of 3,3-bis-(4-hydroxyphenyl)-2-indolinone. Eur J Med Chem 10:143–146

    CAS  Google Scholar 

  63. Poupelin JP, Saint-Ruf G, Perche JC, Roussey JC, Laude B, Narcisse G, Bakri-Logeais F, Hubert F (1980) 2-Hydroxy-1,3-indandione derivatives. II. Condensation products of ninhydrin with polyphenols and their O-methylated derivatives. Eur J Med Chem 15:253–262

    CAS  Google Scholar 

  64. Prabhakar KR, Veerapur VP, Bansal P, Vipan KP, Reddy KM, Barik A, Reddy BKD, Reddanna P, Priyadarsini KI, Unnikrishnan MK (2006) Identification and evaluation of antioxidant, analgesic/anti-inflammatory activity of the most active ninhydrin–phenol adducts synthesized. Bioorg Med Chem 14:7113–7120. https://doi.org/10.1016/j.bmc.2006.06.068

    Article  CAS  PubMed  Google Scholar 

  65. Kashyap M, Das D, Preet R, Mohapatra P, Satapathy SR, Siddharth S, Kundu CN, Guchhait SK (2012) Scaffold hybridization in generation of indenoindolones as anticancer agents that induce apoptosis with cell cycle arrest at G2/M phase. Bioorg Med Chem Lett 22:2474–2479. https://doi.org/10.1016/j.bmcl.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  66. Gogoi A, Das G (2014) NIR sensing of Zn(II) and subsequent dihydrogen phosphate detection by a benzothiazole functionalized ninhdrin based receptor. RSC Adv 4:55689–55695. https://doi.org/10.1039/C4RA10556G

    Article  CAS  Google Scholar 

  67. Das S, Das P, Maity S, Ghosh P, Paul BK, Dutta A (2018) Benzimidazole-based polyheterocycles from ninhydrin: synthesis, X-ray crystal structure and photophysical property. J Mol Struct 1168:234–241. https://doi.org/10.1016/j.molstruc.2018.05.033

    Article  CAS  Google Scholar 

  68. Das S, Fröhlich R, Pramanik A (2006) Synthesis and fluorescent properties of a new class of heterocycles of isoindole fused imidazoles with phenolic subunits. Org Lett 8:4263–4266. https://doi.org/10.1021/ol061520n

    Article  CAS  PubMed  Google Scholar 

  69. Song HS, Lee HJ, Kim HR, Ryu EK, Kim JN (1999) Friedel-Crafts type reactions of some activated cyclic ketones with phenolderivatives. Synth Commun 29:3303–3311. https://doi.org/10.1080/00397919908085958

    Article  CAS  Google Scholar 

  70. Kundu S, Patra A, Pramanik A, (2004) Facile acid-catalyzed condensation of ninhydrin with enols and aromatic compounds and microwave enhanced condensation of ninhydrin with hydroxyl aromatic systems in solid state. Indian J Chem 43B:604–611

    CAS  Google Scholar 

  71. Kundu S, Das S, Pramanik A (2004) Theoretical studies of the acid-catalyzed condensation with aromatic compounds. Indian J Chem 43B:2212–2216

    CAS  Google Scholar 

  72. Na JE, Lee SS, Kim JN (2004) Design and synthesis of ninhydrin-based cyclophanes as potential neutral receptors for quaternary ammonium cations. Tetrahedron Lett 45:7435–7440. https://doi.org/10.1016/j.tetlet.2004.08.078

    Article  CAS  Google Scholar 

  73. Das P, Maity S, Ghosh P, Dutta A, Das S (2020) Condensation of ninhydrin with phenols: regioselective formation of diverse organic scaffolds and crystal structure studies. J Mol Struct 1202:127260. https://doi.org/10.1016/j.molstruc.2019.127260

    Article  CAS  Google Scholar 

  74. Taylor BM, Joullié MM (1998) Reaction of 1,2-indanedione with 3,5-dimethoxyaniline. Tetrahedron 54:5121–15126. https://doi.org/10.1016/S0040-4020(98)00911-9

    Article  Google Scholar 

  75. Black D, Bowyer MC, Condie GC, Craig DC, Kumar N (1994) Reactions of ninhydrin with activated anilines: formation of indole derivatives. Tetrahedron 50:10983–10994. https://doi.org/10.1016/S0040-4020(01)85709-4

    Article  CAS  Google Scholar 

  76. Friedman M (1967) Mechanism of the ninhydrin reaction II. Preparation and spectral properties of reaction products from primary aromatic amines and ninhydrin hydrate. Can J Chem 45:2271–2275. https://doi.org/10.1139/v67-369

    Article  CAS  Google Scholar 

  77. Schönberg A, Singer E (1977) Konstitutionsermittlung der Reaktionsprodukte von Ninhydrinmit 2-aminophenol bzw 2-Aminothiophenol. ChemBer 110:3954–3958. https://doi.org/10.1002/cber.19771101229

    Article  Google Scholar 

  78. Simakov VI, Kurbatov SV, Borbulevych OY, Antipin MY, OlekhnovichL P (2001) Structures of condensation products of ortho-aminophenols with ninhydrin. Russian Chem Bull Int Ed 50:1064–1067. https://doi.org/10.1023/A:1011333722238

    Article  CAS  Google Scholar 

  79. Roth HJ, Kok W (1976) ZurKenntnis der Ninhydrin-Reaktion, 4 Mitt. Reaktionenmit 2-und 4-Dimethylaminoanilin. Arch Pharm Pharm Med Chem 309:92–98. https://doi.org/10.1002/ardp.19763090203

    Article  CAS  Google Scholar 

  80. Sakuma H, Natsumi S, Hidetsugu W, Hiroshi M, Keiji K (2008) Dynamic behavior of cyclic hemiac et al sof 2-hydroxy-2-(2-hydroxyphenyl)-1,3-indandione derivatives. Chem Lett 37:696–697. https://doi.org/10.1246/cl.2008.696

    Article  CAS  Google Scholar 

  81. Nanda KK, Trotter BW (2005) Diastereoselective Petasis Mannich reactions accelerated by hexfluoroisopropanol: a pyrrolidone-derived arylglycine synthesis. Tetrahedron Lett 46:2025–2028. https://doi.org/10.1016/j.tetlet.2005.01.151

    Article  CAS  Google Scholar 

  82. Marminon C, Nacereddine A, Bouaziz Z, Nebois P, Jose J, Borgne ML (2015) Microwave-assisted oxidation of indan-1-ones into ninhydrins. Tetrahedron Lett 56:1840–1842. https://doi.org/10.1016/j.tetlet.2015.02.086

    Article  CAS  Google Scholar 

  83. Jong JAW, Moret M-E, Verhaar MC, Hennink WE, Gerritsen KGF, van Nostrum CF (2018) Effect of substituents on the reactivity of ninhydrin with urea. Chem Select 3:1224–1229. https://doi.org/10.1002/slct.201800040

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge The University of Calcutta and TCG Lifesciences Pvt. Ltd., India for this collaborative research. We also like to thank CAS-V (UGC), DST-FIST, and DST-PURSE, Department of Chemistry, University of Calcutta for funding as departmental projects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sonali Rudra or Chhanda Mukhopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sengupta, A., Maity, S., Saha, P. et al. Diastereo- and regioselective petasis aryl and allyl boration of ninhydrins towards synthesis of functionalized indene-diones and dihydrobenzoindeno-oxazin-ones. Mol Divers 27, 1385–1400 (2023). https://doi.org/10.1007/s11030-022-10496-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10496-4

Keywords

Navigation