Skip to main content
Log in

Design, synthesis, crystal structure, and in vitro antibacterial activities of sulfonamide derivatives bearing the 4-aminoquinazoline moiety

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A total of 66 sulfonamide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized, and their structures were fully characterized by 1H NMR, 13C NMR, and HRMS techniques. Among them, the structures of compounds 5A10 and 5B11 were further confirmed through X-ray single-crystal diffraction analyses. The bioassay results indicated that some of the target compounds displayed higher inhibition activities in vitro against the tested phytopathogenic bacteria. For example, compound 5A26 exhibited a strong anti-Xanthomonas oryzae pv. oryzicola (Xoc) efficacy with an EC50 (half-maximal effective concentration) value of 30.6 μg/mL, over twofold more active than control agent bismerthiazol (BMT). Additionally, compound 5B14 had a good antibacterial effect against the phytopathogen Xanthomonas axonopodis pv. citric (Xac) with EC50 = 34.5 μg/mL, significantly better than control agent BMT (71.5 μg/mL). The anti-Xoc mechanistic studies showed that compound 5A26 exerted its antibacterial efficacy by increasing the permeability of bacterial membrane, decreasing the content of extracellular polysaccharides, and triggering morphological changes of bacterial cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ding M, Wan S, Wu N, Yan Y, Li P, Bao X (2021) Synthesis, structural characterization, and antibacterial and antifungal activities of novel 1,2,4-triazole thioether and thiazolo[3,2-b]-1,2,4-triazole derivatives bearing the 6-fluoroquinazolinyl moiety. J Agric Food Chem 69:15084–15096. https://doi.org/10.1021/acs.jafc.1c02144

    Article  CAS  PubMed  Google Scholar 

  2. Shi J, Ding M, Luo N, Wan S, Li P, Li J, Bao X (2020) Design, synthesis, crystal structure, and antimicrobial evaluation of 6-fluoroquinazolinylpiperidinyl-containing 1,2,4-triazole Mannich base derivatives against phytopathogenic bacteria and fungi. J Agric Food Chem 68:9613–9623. https://doi.org/10.1021/acs.jafc.0c01365

    Article  CAS  PubMed  Google Scholar 

  3. Niño-Liu DO, Ronald PC, Bogdanove AJ (2006) Xanthomonas oryzae pathovars: model pathogens of a model crop. Mol Plant Pathol 7:303–324. https://doi.org/10.1111/j.1364-3703.2006.00344.X

    Article  PubMed  Google Scholar 

  4. Wan X, Yang J, Ahmed W, Liu Q, Wang Y, Wei L, Ji G (2021) Functional analysis of pde gene and its role in the pathogenesis of Xanthomonas oryzae pv. oryzicola. Infect Genet Evol 94:105008. https://doi.org/10.1016/j.meegid.2021.105008

    Article  CAS  PubMed  Google Scholar 

  5. Cai L, Cao Y, Xu Z, Ma W, Zakria M, Zou L, Cheng Z, Chen G (2017) A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci Rep 7:5089. https://doi.org/10.1038/s41598-017-04800-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gottwald TR, Hughes G, Graham JH, Sun X, Riley T (2001) The citrus canker epidemic in Florida: The scientific basis of regulatory eradication policy for an invasive species. Phytopathology 91:30–34. https://doi.org/10.1094/PHYTO.2001.91.1.30

    Article  CAS  PubMed  Google Scholar 

  7. Graham JH, Gottwald TR, Cubero J, Achor DS (2004) Xanthomonas axonopodis pv. citri: factors affecting successful eradication of citrus canker. Mol Plant Pathol 5:1–15. https://doi.org/10.1046/J.1364-3703.2004.00197.X

    Article  PubMed  Google Scholar 

  8. Zimaro T, Thomas L, Marondedze C, Garavaglia BS, Gehring C, Ottado J, Gottig N (2013) Insights into Xanthomonas axonopodis pv. citri biofilm through proteomics. BMC Microbiol 13:186. https://doi.org/10.1186/1471-2180-13-186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang T, Wang G, Jia ZH, Pan DL, Zhang JY, Guo ZR (2018) Transcriptome analysis of kiwifruit in response to Pseudomonas syringae pv. actinidiae infection. Int J Mol Sci 19:373. https://doi.org/10.3390/ijms19020373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu X, Zhu X, Zhou Y, Li Q, Hu Z, Li T, Tao J, Dou M, Zhang M, Shao Y, Sun R (2019) Discovery of N-aryl-pyridine-4-ones as novel potential agrochemical fungicides and bactericides. J Agric Food Chem 67:13904–13913. https://doi.org/10.1021/acs.jafc.9b06296

    Article  CAS  PubMed  Google Scholar 

  11. Bagul SD, Rajput JD, Tadavi SK, Bendre RS (2017) Design, synthesis and biological activities of novel 5-isopropyl-2-methylphenolhydrazide-based sulfonamide derivatives. Res Chem Intermed 43:2241–2252. https://doi.org/10.1007/s11164-016-2759-5

    Article  CAS  Google Scholar 

  12. Al-Mohammed NN, Alias Y, Abdullah Z, Shakir RM, Taha EM, Hamid AA (2013) Synthesis and antibacterial evaluation of some novel imidazole and benzimidazole sulfonamides. Molecules 18:11978–11995. https://doi.org/10.3390/molecules181011978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chohan ZH, Rauf A, Naseer MM, Somra MA, Supuran CT (2006) Antibacterial, antifungal and cytotoxic properties of some sulfonamide-derived chromones. J Enzyme Inhib Med Chem 21:173–177. https://doi.org/10.1080/14756360500533059

    Article  CAS  PubMed  Google Scholar 

  14. Lal J, Gupta SK, Thavaselvam D, Agarwal DD (2013) Biological activity, design, synthesis and structure activity relationship of some novel derivatives of curcumin containing sulfonamides. Eur J Med Chem 64:579–588. https://doi.org/10.1016/j.ejmech.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  15. He F, Shi J, Wang Y, Wang S, Chen J, Gan X, Song B, Hu D (2019) Synthesis, antiviral activity, and mechanisms of purine nucleoside derivatives containing a sulfonamide moiety. J Agric Food Chem 67:8459–8467. https://doi.org/10.1021/acs.jafc.9b02681

    Article  CAS  PubMed  Google Scholar 

  16. Chen Z, Xu W, Liu K, Yang S, Fan H, Bhadury PS, Huang D, Zhang Y (2010) Synthesis and antiviral activity of 5-(4-chlorophenyl)-1,3,4-thiadiazole sulfonamides. Molecules 15:9046–9056. https://doi.org/10.3390/molecules15129046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghorab MM, Alsaid MS, El-Gaby MSA, Safwat NA, Elaasser MM, Soliman AM (2016) Biological evaluation of some new N-(2,6-dimethoxypyrimidinyl) thioureido benzenesulfonamide derivatives as potential antimicrobial and anticancer agents. Eur J Med Chem 124:299–310. https://doi.org/10.1016/j.ejmech.2016.08.060

    Article  CAS  PubMed  Google Scholar 

  18. Thakur A, Manohar S, Gerena CEV, Zayas B, Kumar V, Malhotra SV, Rawat DS (2014) Novel 3,5-bis(arylidiene)-4-piperidone based monocarbonyl analogs of curcumin: Anticancer activity evaluation and mode of action study. Med Chem Commun 5:576–586. https://doi.org/10.1039/C3MD00399J

    Article  CAS  Google Scholar 

  19. Puccetti L, Fasolis G, Vullo D, Chohan ZH, Scozzafava A, Supuran CT (2005) Carbonic anhydrase inhibitors. Inhibition of cytosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff’s bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes. Bioorg Med Chem Lett 15:3096–3101. https://doi.org/10.1016/j.bmcl.2005.04.055

    Article  CAS  PubMed  Google Scholar 

  20. Abdel-Aziz AAM, Angeli A, El-Azab AS, Hammouda MEA, El-Sherbeny MA, Supuran CT (2019) Synthesis and anti-inflammatory activity of sulfonamides and carboxylates incorporating trimellitimides: dual cyclooxygenase/carbonic anhydrase inhibitory actions. Bioorg Chem 84:260–268. https://doi.org/10.1016/j.bioorg.2018.11.033

    Article  CAS  PubMed  Google Scholar 

  21. Gorantla V, Gundla R, Jadav SS, Anugu SR, Chimakurthy J, Nidasanametla SK, Korupolu R (2017) Molecular hybrid design, synthesis and biological evaluation of N-phenyl sulfonamide linked N-acyl hydrazone derivatives functioning as COX-2 inhibitors: new anti-inflammatory, anti-oxidant and anti-bacterial agents. New J Chem 41:13516–13532. https://doi.org/10.1039/C7NJ03332J

    Article  CAS  Google Scholar 

  22. Das D, Hong J (2019) Recent advancements of 4-aminoquinazoline derivatives as kinase inhibitors and their applications in medicinal chemistry. Eur J Med Chem 170:55–72. https://doi.org/10.1016/j.ejmech.2019.03.004

    Article  CAS  PubMed  Google Scholar 

  23. Wang Z, Liu L, Dai H, Si X, Zhang L, Li E, Yang Z, Chao G, Zheng J, Ke Y, Lihong S, Zhang Q, Liu H (2021) Design, synthesis and biological evaluation of novel 2,4-disubstituted quinazoline derivatives targeting H1975 cells via EGFR-PI3K signaling pathway. Bioorg Med Chem 43:116265. https://doi.org/10.1016/j.bmc.2021.116265

    Article  CAS  PubMed  Google Scholar 

  24. Kumar AS, Kudva J, Kumar SM, Vishwanatha U, Kumar V, Naral D (2018) Synthesis, characterization, crystal structure, Hirshfeld interaction and bio-evaluation studies of 4-amino quinazoline sulfonamide derivatives. J Mol Struct 1167:142–153. https://doi.org/10.1016/j.molstruc.2018.04.055

    Article  CAS  Google Scholar 

  25. Alafeefy AM, Kadi AA, Al-Deeb OA, El-Tahir KEH, Al-Jaber NA (2010) Synthesis, analgesic and anti-inflammatory evaluation of some novel quinazoline derivatives. Eur J Med Chem 45:4947–4952. https://doi.org/10.1016/j.ejmech.2010.07.067

    Article  CAS  PubMed  Google Scholar 

  26. Bianco A, Reghellin V, Donnici L, Fenu S, Alvarez R, Baruffa C, Peri F, Pagani M, Abrignani S, Neddermann P, Francesco RD (2012) Metabolism of phosphatidylinositol 4-kinase IIIα-dependent PI4P is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity. PLoS Pathog 8:e1002576. https://doi.org/10.1371/journal.ppat.1002576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu Z, Zhao SJ, Lv ZS, Gao F, Wang Y, Zhang F, Bai L, Deng JL (2019) Fluoroquinolone-isatin hybrids and their biological activities. Eur J Med Chem 162:396–406. https://doi.org/10.1016/j.ejmech.2018.11.032

    Article  CAS  PubMed  Google Scholar 

  28. Upadhyay N, Tilekar K, Loiodice F, Anisimova NY, Spirina TS, Sokolova DV, Smirnova GB, Choe JY, Meyer-Almes FJ, Pokrovsky VS, Lavecchia A, Ramaa CS (2021) Pharmacophore hybridization approach to discover novel pyrazoline-based hydantoin analogs with anti-tumor efficacy. Bioorg Chem 107:104527. https://doi.org/10.1016/j.bioorg.2020.104527

    Article  CAS  PubMed  Google Scholar 

  29. Shi J, Luo N, Ding M, Bao X (2020) Synthesis, in vitro antibacterial and antifungal evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing the 6-fluoroquinazol-inylpiperidinyl moiety. Chin Chem Lett 31:434–438. https://doi.org/10.1016/j.cclet.2019.06.037

    Article  CAS  Google Scholar 

  30. Fan Z, Shi J, Luo N, Ding M, Bao X (2019) Synthesis, crystal structure, and agricultural antimicrobial evaluation of novel quinazoline thioether derivatives incorporating the 1,2,4-triazolo[4,3-a]pyridine moiety. J Agric Food Chem 67:11598–11606. https://doi.org/10.1021/acs.jafc.9b04733

    Article  CAS  PubMed  Google Scholar 

  31. Adler P, Teskey CJ, Kaiser D, Holy M, Sitte HH, Maulide N (2019) α-Fluorination of carbonyls with nucleophilic fluorine. Nat Chem 11:329–334. https://doi.org/10.1038/s41557-019-0215-z

    Article  CAS  PubMed  Google Scholar 

  32. Wei C, Huang J, Luo Y, Wang S, Wu S, Xing Z, Chen J (2021) Novel amide derivatives containing an imidazo[1,2-a]pyridine moiety: Design, synthesis as potential nematicidal and antibacterial agents. Pestic Biochem Physiol 175:104857. https://doi.org/10.1016/j.pestbp.2021.104857

    Article  CAS  PubMed  Google Scholar 

  33. Yi C, Chen J, Wei C, Wu S, Wang S, Hu D, Song B (2020) α-Haloacetophenone and analogues as potential antibacterial agents and nematicides. Bioorg Med Chem Lett 30:126814. https://doi.org/10.1016/j.bmcl.2019.126814

    Article  CAS  PubMed  Google Scholar 

  34. Chen JN, Wang XF, Li T, Wu DW, Fu XB, Zhang GJ, Shen XC, Wang HS (2016) Design, synthesis, and biological evaluation of novel quinazolinyl-diaryl urea derivatives as potential anticancer agents. Eur J Med Chem 107:12–25. https://doi.org/10.1016/j.ejmech.2015.10.045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 32060626) and Natural Science Foundation of Guizhou Province (No. 20201Z025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Bao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 28824 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, S., Wu, N., Yan, Y. et al. Design, synthesis, crystal structure, and in vitro antibacterial activities of sulfonamide derivatives bearing the 4-aminoquinazoline moiety. Mol Divers 27, 1243–1254 (2023). https://doi.org/10.1007/s11030-022-10484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-022-10484-8

Keywords

Navigation