Skip to main content
Log in

Production of benzazepine derivatives via four-component reaction of isatins: study of antioxidant activity

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In current research, benzazepine derivative is synthesized via a new process of four-component reaction of isatin or its derivatives, α-haloketones, activated acetylenic compounds, isoquinoline and potassium fluoride/clinoptilolite nanoparticles (KF/CP NPs) in acidic solution of H2O2 in water at room temperature. Also, antioxidation property of some prepared benzazepines is investigated by employing trapping diphenyl-picrylhydrazine (DPPH) radical and ability of ferric reduction experiment. Among investigated compounds, compounds 5c have good results relative to BHT and TBHQ as standard antioxidant. Also, the Gram-positive and Gram-negative bacteria disk diffusion research is used for the confirmation of antimicrobial power of some prepared benzazepines. The achieved outcomes of disk diffusion experiment showed that these compounds avoided the growth of bacteria. Our procedure has a few benefits relative to reported method such as good rate of reaction, product with high efficiency, simple removal of catalyst from mixture of reaction. In the yield of the product, KF/clinoptilolite nanoparticles show a satisfactory recyclable activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Domling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17. https://doi.org/10.1021/cr0505728

    Article  CAS  PubMed  Google Scholar 

  2. Tietze LF, Rackelmann NN (1967) Domino reactions in the synthesis of heterocyclic natural products and analogs. Pure Appl Chem 2004:11. https://doi.org/10.1351/pac200476111967

    Article  Google Scholar 

  3. Domling A, Ugi I (2000) Multicomponent Reactions with Isocyanides. Angew Chem Int Ed 39:3168. https://doi.org/10.1002/1521-3773(20000915)39:183.0.CO;2-U

    Article  CAS  Google Scholar 

  4. Kolb J, Beck B, Almstetter M, Heck S, Herdtweck E, Domling A (2003) New MCRs: the first 4-component reaction leading to 2,4-disubstituted thiazoles. Mol Divers 6:297. https://doi.org/10.1023/B:MODI.0000006827.35029.e4

    Article  CAS  PubMed  Google Scholar 

  5. Domling A, Ugi I, Werner B (2003) The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules 8:53. https://doi.org/10.3390/80100053

    Article  PubMed Central  Google Scholar 

  6. Bon RS, Vliet BV, Sprenkels NE, Schmitz RF, Kanter FJJ, Stevens CV, Swart M, Bickelhaupt FM, Groen MB, Orru RV (2005) Multicomponent synthesis of 2-imidazolines. J Org Chem 70:3542. https://doi.org/10.1021/jo050132g

    Article  CAS  PubMed  Google Scholar 

  7. Banfi L, Basso A, Guanti G, Kielland N, Repeto C, Riva R (2007) Ugi Ugi multicomponent reaction followed by an intramolecular nucleophilic substitution: convergent multicomponent synthesis of 1-sulfonyl 1,4-diazepan-5-ones and of their benzo-fused derivatives. J Org Chem 72:2151. https://doi.org/10.1021/jo062626z

    Article  CAS  PubMed  Google Scholar 

  8. Galliford CV, Scheidt KA (1811) Catalytic multicomponent reactions for the synthesis of N-Aryl trisubstituted pyrroles. J Org Chem 2007:72. https://doi.org/10.1021/jo0624086

    Article  CAS  Google Scholar 

  9. Erdmenger T, Guerrero-Sanchez C, Vitz J, Hoogenboom R, Schubert US (2010) Recent developments in the utilization of green solvents in polymer chemistry. Chem Soc Rev 39:3317–3333. https://doi.org/10.1039/B909964F

    Article  CAS  PubMed  Google Scholar 

  10. Hoyt SB, London C, Gorin D, Wyvratt MJ, Fisher MH, Abbadie C, Felix JP, Garcia ML, Li X, Lyons KA, McGowan E, MacIntyre DE, Martin WJ, Priest BT, Ritter A, Smith MM, Warren VA, Williams BS, Kaczorowski GJ, Parsons WH (2007) Discovery of a novel class of benzazepinone Na(v)17 blockers: potential treatments for neuropathic pain. Bioorg Med Chem Lett 17:4630

    Article  CAS  PubMed  Google Scholar 

  11. Smith BM, Smith JM, Tsai JH, Schultz JA, Gilson CA, Estrada SA, Chen RR, Park DM, Prieto EB, Gallardo CS, Sengupta D, Thomsen WJ, Saldana HR, Whelan KT, Menzaghi F, Webb RR, Beeley NRA (2005) Discovery and SAR of new benzazepines as potent and selective 5-HT2C receptor agonists for the treatment of obesity. Bioorg Med Chem Lett 15:1467

    Article  CAS  PubMed  Google Scholar 

  12. Seto M, Miyamoto N, Aikawa K, Aramaki Y, Kanzaki N, Iizawa Y, Baba M, Shiraishi M (2005) Orally active CCR5 antagonists as anti-HIV-1 agents. Part 3: synthesis and biological activities of 1-benzazepine derivatives containing a sulfoxide moiety. Bioorg Med Chem 13:363

    Article  CAS  PubMed  Google Scholar 

  13. Seto M, Aramaki Y, Okawa T, Miyamoto N, Aikawa K, Kanzaki N, Niwa S-I, Iizawa Y, Baba M, Shiraishi M (2004) Orally active CCR5 antagonists as Anti-HIV-1 agents: synthesis and biological activity of 1-benzothiepine 1,1-dioxide and 1-benzazepine derivatives containing a tertiary amine moiety. Chem Pharm Bull 52:577

    Article  CAS  Google Scholar 

  14. Kondo K, Kan K, Tanada Y, Bando M, Shinohara T, Kurimura M, Ogawa H, Nakamura S, Hirano T, Yamamura Y, Kido M, Mori T, Tominaga M (2002) Characterization of Orally Active Nonpeptide Vasopressin V2 Receptor Agonist. Synthesis and Biological Evaluation of Both the (5R)- and (5S)-Enantioisomers of 2-[1-(2-Chloro-4-pyrrolidin-1-yl-benzoyl)-2,3,4,5-tetrahydro-1H-1-benzazepin- 5-yl]-N-isopropylacetamide. J Med Chem 45:3805

    Article  CAS  PubMed  Google Scholar 

  15. Kawase M, Saito S, Motohashi N (2000) Chemistry and biological activity of new 3-benzazepines. Int J Antimicrob Agents 14:193

    Article  CAS  PubMed  Google Scholar 

  16. Fuchs JR, Funk RL (2001) Org Lett 3:3923

    Article  CAS  PubMed  Google Scholar 

  17. McNulty J, Nair JJ, Codina C, Bastida J, Pandey S, Gerasimoff J, Griffin C (2007) Selective apoptosis-inducing activity of crinum-type Amaryllidaceae alkaloids. Phytochemistry 68:1068

    Article  CAS  PubMed  Google Scholar 

  18. Chang JH, Kang H, Jung I, Cho C (2010) 12-Helix folding of cyclobutane β-amino acid oligomers. Org Lett 12:2016

    Article  CAS  PubMed  Google Scholar 

  19. Enders D, Lenzen A, Raabe G (2005) Asymmetric synthesis of the 1-epi aglycon of the cripowellins A and B. Angew Chem Int Ed 44:3766

    Article  CAS  Google Scholar 

  20. Cedrón JC, Estévez-Braun A, Ravelo AG, Gutiérrez D, Flores N, Bucio MA, Pérez-Hernández N, Joseph-Nathan P (2009) Bioactive montanine derivatives from halide-induced rearrangements of haemanthamine-type. Alkaloids absolute configuration by VCD. Org Lett 11:1491

    Article  PubMed  CAS  Google Scholar 

  21. Soto S, Vaz E, Dell’Aversana C, Alvarez R, Altucci L, de Lera AR (2012) New synthetic approach to paullones and characterization of their SIRT1 inhibitory activity. Org Biomol Chem 10:2101

    Article  CAS  PubMed  Google Scholar 

  22. Egert-Schmidt AM, Dreher J, Dunkel U, Kohfeld S, Preu L, Weber H, Ehlert JE, Mutschler B, Totzke F, Schachtele C, Kubbutat MH, Baumann K, Kunick C (2010) Structure-based design, synthesis, and structure − activity relationship studies of HIV-1 protease inhibitors incorporating phenyloxazolidinones. J Med Chem 53:2433

    Article  CAS  PubMed  Google Scholar 

  23. Hughes RA, Harris T, Altmann E, Mcallister D, Vlahos R, Robertson A, Cushman M, Wang Z, Stewart AG (2002) 2-methoxyestradiol and analogs as novel antiproliferative agents: analysis of three-dimensional quantitative structure-activity relationships for DNA synthesis inhibition and estrogen receptor binding. Mol Pharmacol 61:1053

    Article  CAS  PubMed  Google Scholar 

  24. Tashima T, Toriumi Y, Mochizuki Y, Nonomura T, Nagaoka S, Furukawa K, Tsuru H, Adachi- Akahane S, Ohwada T (2006) Design, synthesis, and BK channel-opening activity of hexahydrodibenzazepinone derivatives. Bioorg Med Chem 14:8014

    Article  CAS  PubMed  Google Scholar 

  25. Miki T, Kori M, Fujishima A, Mabuchi H, Tozawa R, Nakamura M, Sugiyama Y, Yukimasa H (2002) Syntheses of fused heterocyclic compounds and their inhibitory activities for squalene synthase. Bioorg Med Chem 10:385

    Article  CAS  PubMed  Google Scholar 

  26. Bower JF, Szeto P, Gallagher T (2007) Reactivity of cyclic sulfamidates towards phosphonate-stabilised enolates: synthesis and applications of α-phosphono lactams. Org Biomol Chem 5:143–150

    Article  CAS  PubMed  Google Scholar 

  27. Bower JF, Szeto P, Gallagher T (2005) Cyclic sulfamidates as lactam precursors. An efficient asymmetric synthesis of (-)-aphanorphine. Chem Commun 5793 − 5795

  28. Zhai H, Luo S, Ye C, Ma Y (2003) A facile asymmetric route to (−)-aphanorphine. J Org Chem 68:8268–8271

    Article  CAS  PubMed  Google Scholar 

  29. Fuchs JR, Funk RL (2001) Intramolecular electrophilic aromatic substitution reactions of 2-amidoacroleins: a new method for the preparation of tetrahydroisoquinolines, tetrahydro-3-benzazepines, and hexahydro-3-benzazocines. Org Lett 3:3923–3925

    Article  CAS  PubMed  Google Scholar 

  30. Worden SM, Mapitse R, Hayes CJ (2002) Towards a total synthesis of (−)-cephalotaxine: construction of the BCDE-tetracyclic core. Tetrahedron Lett 43:6011–6014

    Article  CAS  Google Scholar 

  31. Tietze LF, Modi A (2000) Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Med Res Rev 20:304–322

    Article  CAS  PubMed  Google Scholar 

  32. Couty S, Liegault B, Meyer C, Cossy J (2006) Synthesis of 3-(arylmethylene)isoindolin-1-ones from ynamides by Heck–Suzuki–Miyaura domino reactions. Application to the synthesis of lennoxamine. Tetrahedron 62:3882–3895

    Article  CAS  Google Scholar 

  33. Comins DL, Schilling S, Zhang Y (2005) A short synthesis of lennoxamine using a radical cascade. Org Lett 7:95–98

    Article  CAS  PubMed  Google Scholar 

  34. Zhang Y, Duan W, Chen J, Hu Y (2019) Thermo-promoted reactions of anthranils with carboxylic acids, amines, phenols, and malononitrile under catalyst-free conditions. J Org Chem 84(7):4467–4472

    Article  CAS  PubMed  Google Scholar 

  35. So M, Kotake T, Matsuura K, Inui M, Kamimura A (2012) Concise synthesis of 2-benzazepine derivatives and their biological activity. J Org Chem 77:4017–4028

    Article  CAS  PubMed  Google Scholar 

  36. Venkata Prasad J, Prabhakar M, Manjulatha K, Rambabu D, Anand Solomon K, Gopi Krishna G, Anil Kumar K (2010) Efficient catalyst-free Domino approach for the synthesis of novel 2-benzazepine derivatives in water. Tetrahedron Lett 51:3109–3111

    Article  CAS  Google Scholar 

  37. Zhao Y, Chen J, Xiao W (2018) Visible-light photocatalytic decarboxylative alkyl radical addition cascade for synthesis of benzazepine derivatives. Org Lett 20:224–227

    Article  CAS  PubMed  Google Scholar 

  38. Plieninger H, Wild D (1966) Benzazepin-derivate aus 2-Äthoxy-indol. Chem Ber 99:3070–3075

    Article  CAS  Google Scholar 

  39. Sakan T, Matsubara S, Takagi H, Tokunaga Y, Miwa T (1968) The reactions of 2-(2-indolyl)ethyl tosylates with bases, a novel ring enlargement reaction of indole ring. Tetrahedron Lett 4925–4928

  40. Schroeter G, Gluschke A, Geotzky S, Huang J, Irmisch G, Laves E, Schrader O, Stier G (1930) Ber Dtsch Chem Ges 63:1308–1329

    Article  Google Scholar 

  41. Briggs LH, De Ath GC (1937) 37. An X-ray study of the phthalocyanines. Part III. Quantitative structure determination of nickel phthalocyanine. J Chem Soc 456–457

  42. Richard RW, Smith RM (1966) The synthesis of1H, 2H, 5H-azepine-2,5-diones by schmidt rearrangement or quinines. Tetrahedron Lett 7:2361–2365

    Article  Google Scholar 

  43. Booker-Milburn KI, Dunkin IR, Kelly FC, Khalaf AI, Learmonth DA, Proctor GR, Scopes DIC (1997) Efficient cyclopropanation of C60 starting from malonates. J Chem Soc Perkin Trans 1:3261–3273

    Article  Google Scholar 

  44. Cromarty A, Proctor GR (1968) A new azepine and azepinone synthesis. J Chem Soc Chem Commun 842–843

  45. Cromarty A, Hque KE, Proctor GR (1971) Azabenzocycloheptenones. Part XIII. Ring expansion of 1,2-dihydroquinoline derivatives. J Chem Soc 3536–3540

  46. Sato Y, Kojima H, Shirai H (1976) Ring expansion reaction of 1,2-dihydroquinolines to 1-benzazepines. J Org Chem 41:195–200

    Article  CAS  Google Scholar 

  47. Quadir M, Priestley RE, Rising TWDF, Gelbrich T, Coles SJ, Hursthouse MB, Sheldrake PW, Whittall N, Hii KK (2003) Synthesis of 2-substituted 1-benzyl-2,3,4,5-tetrahydro-1-benzazepines by palladium catalysis. Observation of a competitive β-hydride elimination pathway. Tetrahedron Lett 44:3675–3678

    Article  CAS  Google Scholar 

  48. Dyker G, Markwitz H (1998) A palladium-catalyzed domino process to 1-benzazepines. Synthesis 1750–1754

  49. Martinez-Estibalez U, Sotomayor N, Lete E (2007) Pd-catalyzed arylation/ring-closing metathesis approach to azabicycles. Tetrahedron Lett 48:2919–2922

    Article  CAS  Google Scholar 

  50. Suzuki A, Brown HC (2003) In: Organic Synthesis via Boranes. Aldrich Chemical Company, Inc., Milwaukee, vol 3; for selected reviews on SM crosscoupling

  51. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  52. Kotha S, Lahiri K, Kashinath D (2002) Recent applications of the Suzuki—Miyaura cross-coupling reaction in organic synthesis. Tetrahedron 58:9633–9695

    Article  CAS  Google Scholar 

  53. Moreno-Manas M, Pleixats R, Sebastian RM, Vallribera A, Roglans A (2004) Nickel(0) complexes of acyclic polyunsaturated aza ligands. J Org Chem 689:3669–3684

    Article  CAS  Google Scholar 

  54. Nicolaou KC, Bulger PG, Sarlah D (2005) Palladium-catalyzed cross-coupling reactions in total synthesis. Angew Chem 117:4516–4563

    Article  Google Scholar 

  55. Kotha S, Lahiri K (2007) Expanding the diversity of polycyclic aromatics through a Suzuki–Miyaura cross-coupling strategy. Eur J Org Chem 1221–1236

  56. Kotha S, Chakraborty K, Brahmachary E (1999) A general and simple method for the synthesis of star-shaped thiophene derivatives. Synlett 1621–1623

  57. Trybulski EJ, Reeder E, Blount JF, Walser A, Fryer RI (1982) 2-Benzazepines. I. Synthesis of 2-benzazepin-4-ones and -5-ones via 2-acetylenic benzophenones. J Org Chem 47:2441–2447

    Article  CAS  Google Scholar 

  58. Jenny-Lee P, Pathak R, De Koning CB, Van Otterlo WAL (2007) Synthesis of substituted 2,3-Dihydro-1H-2-benzazepines and 1,2-Dihydroisoquinolines using an isomerization-ring-closing metathesis strategy: scope and limitations. Eur. J. Org. Chem 4953–4961

  59. Kasparek S (1974) 1-, 2-, and 3-Benzazepines. Adv Heterocycl Chem 17:45

    Article  CAS  Google Scholar 

  60. Gschwend H (1976) U.S. Patent 3,947,585, Mar 30, 1976

  61. Eugene JT, Earl R, John FB, Armin W, Ian Fryer R (1982) 2-Benzazepines. I. Synthesis of 2-benzazepin-4-ones and -5-ones via 2-acetylenic benzophenones. J Org Chem 47:2441–2447

    Article  Google Scholar 

  62. Mukesh D, Anil Kumar K (2007) Green chemistry and engineering. Elsevier Academic Press, Oxford

    Google Scholar 

  63. Anastas PT, Lankey RL (2002) Sustainability through green chemistry and engineering. ACS Symp Ser 823:1–11

    Article  CAS  Google Scholar 

  64. Anastas PT, Williamson TC (1998) Green chemistry: frontiers in benign chemical syntheses and processes. Oxford University Press, Oxford

    Google Scholar 

  65. Clark JH, Macquarrie DJ (2002) Handbook of green chemistry and technology. Blackwell, Oxford

    Book  Google Scholar 

  66. Butler RN, Coyne AG (2016) Organic synthesis reactions on-water at the organic–liquid water interface. Org Biomol Chem 14:9945–9960

    Article  CAS  PubMed  Google Scholar 

  67. Li C, Chen L (2006) Organic chemistry in water. Chem Soc Rev 35:68–82

    Article  PubMed  Google Scholar 

  68. Khalilzadeh MA, Hosseini A, Pilevar A (2011) Potassium fluoride supported on natural nanoporous zeolite: a new solid base for the synthesis of diaryl ethers. Eur. J. Org. Chem. 8:1587. https://doi.org/10.1002/ejoc.201001447

    Article  CAS  Google Scholar 

  69. Salmanpour S, Khalilzadeh MA, Hosseini A (2013) KF/Clinoptilolite: an efficient promoter for the synthesis of thioethers. Comb Chem High Throughput Screen 16:339

    Article  CAS  PubMed  Google Scholar 

  70. Khalilzadeh MA, Keipour H, Hosseini A, Zareyee D (2014) KF/Clinoptilolite, an effective solid base in Ullmann ether synthesis catalyzed by CuO nanoparticles. New J Chem 38:42. https://doi.org/10.1039/c3nj00834g

    Article  CAS  Google Scholar 

  71. Hallajian S, Khalilzadeh MA, Tajbakhsh M, Alipour E, Safaei Z (2015) Nano clinoptilolite: highly efficient catalyst for the synthesis of chromene derivatives under solvent-free conditions. Comb Chem High Throughput Screen 18(5):486

    Article  CAS  PubMed  Google Scholar 

  72. Xie WL, Huang XM (2006) Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO catalyst. Catal Lett 107:53–59. https://doi.org/10.4236/lce.2011.21001

    Article  CAS  Google Scholar 

  73. Gao LJ, Teng GY, Lv JH, Xiao GM (2010) Biodiesel synthesis catalyzed by the KF/Ca−Mg−Al hydrotalcite base catalyst. Energy Fuels 24:646–651. https://doi.org/10.1021/ef900800d

    Article  CAS  Google Scholar 

  74. Hu S, Guan Y, Wang Y, Han H (2011) Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production. Appl Energy 88:2685. https://doi.org/10.9767/bcrec.12.3.923.460-468

    Article  CAS  Google Scholar 

  75. Ando T, Yamawaki J (1979) Chem Lett 1:45

    Article  CAS  Google Scholar 

  76. Zhu JH, Chun Y, Qin Y, Xu QH (1998) An investigation of KF modification to generate strong basic sites on NaY zeolite. Microporous Mesoporous Mater 24:19–28

    Article  CAS  Google Scholar 

  77. Asseid FM, Duke CVA, Miller JMA (1990) A 19F magic angle spinning nuclear magnetic resonance and infrared analysis of the adsorption of alkali metal fluorides onto montmorillonite clay. Can J Chem 68:1420. https://doi.org/10.1139/v90-217

    Article  CAS  Google Scholar 

  78. Zahouily M, Bahlaouane B, Aadil M, Rayadh A, Sebti S (2004) Natural phosphate doped with potassium fluoride: efficient catalyst for the construction of a carbon−carbon bond. Org Process Res Dev 8:275–278. https://doi.org/10.1021/op034161+

    Article  CAS  Google Scholar 

  79. Gao L, Teng G, Xiao G, Wei R (2010) Biodiesel from palm oil via loading KF/Ca–Al hydrotalcite catalyst. Biomass Bioenergy 34:1283–1288. https://doi.org/10.1016/j.biombioe.2010.03.023

    Article  CAS  Google Scholar 

  80. Kraljevic Paveli S, Simovic Medica J, Gumbarevic D, Filošević A, Pržulj N, Pavelić K (2018) Critical review on zeolite clinoptilolite safety and medical applications in vivo. Front Pharmacol 9:1–15

    Article  CAS  Google Scholar 

  81. Smith JV (1998) Topochemistry of zeolites and related materials. 1. topology and geometry. Chem Rev 88:149–182. https://doi.org/10.1021/cr00083a008

    Article  Google Scholar 

  82. Ames LL (1960) The cation sieve properties of clinoptilolite. Am Mineral 45:689

    CAS  Google Scholar 

  83. Hossaini ZS, Zareyee D, Sheikholeslami-Farahani F, Vaseghi S, Zamani A (2017) ZnO-NR as the efficient catalyst for the synthesis of new thiazole and cyclopentadienone phosphonate derivatives in water. Heteroat Chem 28:e21362. https://doi.org/10.1002/hc.21362

    Article  CAS  Google Scholar 

  84. Rostami-charati F, Hossaini ZS, Zareyee D, Afrashteh S, Hosseinzadeh M (2017) ZnO-nanorods as an efficient catalyst for the synthesis of 1,3-thiazolidine derivatives by aqueous multicomponent reactions of isothiocyanates. J Heterocycl Chem 54:1937–1942. https://doi.org/10.1002/jhet.2789

    Article  CAS  Google Scholar 

  85. Rostami-Charati F, Hossaini ZS, Rostamian R, Zamani A, Abdoli M (2017) Green synthesis of indol-2-one derivatives from N-alkylisatins in the presence of KF/clinoptilolite nanoparticles. Chem Heterocycl Compd 53:480–483

    Article  CAS  Google Scholar 

  86. Rezayati S, Sheikholeslami-Farahani F, Hossaini ZS, Hajinasiri R, Afshari Sharif Abad S (2016) Regioselctive thiocyanation of aromatic and heteroaromatic compounds using a novel bronsted acidic ionic liquid. Comb Chem High Throughput Screen 9:720–727. https://doi.org/10.2174/1386207319666160709191851

    Article  CAS  Google Scholar 

  87. Rostami-Charati F, Hossaini ZS, Sheikholeslami-Farahani F, Azizi Z, Siadati SA (2015) Synthesis of 9H-furo [2,3-f]Chromene Derivatives by Promoting ZnO Nanoparticles. Comb Chem High Troughput Screen 18:872–880

    Article  CAS  Google Scholar 

  88. Bidchol AM, Wilfred A, Abhijna P, Harish R (2011) Free radical scavenging activity of aqueous and ethanolic extract of Brassica oleracea L. var. italic. Food Bioprocess Tech 4:1137–1143. https://doi.org/10.1007/s11947-009-0196-9

    Article  Google Scholar 

  89. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992) Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J Agric Food Chem 40:945–948. https://doi.org/10.1021/jf00018a005

    Article  CAS  Google Scholar 

  90. Yildirim A, Mavi A, Kara AA (2001) Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J Agric Food Chem 49:4083–4089

    Article  CAS  PubMed  Google Scholar 

  91. Sajjadi-Ghotbabadi H, Javanshir Sh, Rostami-Charati F (2016) Nano KF/Clinoptilolite: an effective heterogeneous base nanocatalyst for synthesis of substituted quinolines in water. Catal Lett 146:338–344

    Article  CAS  Google Scholar 

  92. Yen GC, Duh PD (1994) Scavenging effect of methanolic extracts of Peanut Hulls on free-radical and active-oxygen species. J Agric Food Chem 42:629–632. https://doi.org/10.1021/jf00039a005

    Article  CAS  Google Scholar 

Download references

Acknowledegments

We thank Islamic Azad University of Qaemshahr and Karaj for their spiritual support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrooz Mirza.

Ethics declarations

Conflict of interest

Any conflict of interest wasn’t seen in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orimi, F.G., Mirza, B. & Hossaini, Z. Production of benzazepine derivatives via four-component reaction of isatins: study of antioxidant activity. Mol Divers 25, 2171–2182 (2021). https://doi.org/10.1007/s11030-020-10110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10110-5

Keywords

Navigation