Skip to main content
Log in

Lemon juice catalyzed C–C bond formation via C–H activation of methylarene: a sustainable synthesis of chromenopyrimidines

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

An economical and proficient approach has been developed for the synthesis of chromenopyrimidines via three-component reaction of thiobarbituric acid/barbituric acid, methylarenes and dimedone/1,3-cyclohexanedione by using lemon juice as a natural, biodegradable catalyst and TBHP as an oxidant. This transformation involves metal-free C–C bond formation via C–H activation of methylarenes under mild reaction conditions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Beccalli EM, Broggini G, Martinelli M, Sottocornola S (2007) C–C, C–O, C–N bond formation on sp 2 carbon by Pd (II)-catalyzed reactions involving oxidant agents. Chem Rev 107:5318–5365. https://doi.org/10.1021/cr068006f

    Article  CAS  PubMed  Google Scholar 

  2. Liu B, Wang W, Huang R, Yan J, Wu J, Xue W, Yang S, Jin Z, Chi YR (2017) Direct activation of β-sp3-carbons of saturated carboxylic esters as electrophilic carbons via oxidative carbene catalysis. Org Lett 20:260–263. https://doi.org/10.1021/acs.orglett.7b03650

    Article  CAS  PubMed  Google Scholar 

  3. Alberico D, Scott ME, Lautens M (2007) Aryl–aryl bond formation by transition-metal-catalyzed direct arylation. Chem Rev 107:174–238. https://doi.org/10.1021/cr0509760

    Article  CAS  PubMed  Google Scholar 

  4. Chen X, Engle KM, Wang DH, Yu JQ (2009) Palladium (II)-catalyzed C– H activation/C– C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48:5094–5115. https://doi.org/10.1002/anie.200806273

    Article  CAS  Google Scholar 

  5. Moselage M, Li J, Ackermann L (2015) Cobalt-catalyzed C–H activation. ACS Catal 6:498–525. https://doi.org/10.1021/acscatal.5b02344

    Article  CAS  Google Scholar 

  6. Shang R, Ilies L, Nakamura E (2017) Iron-catalyzed C–H bond activation. Chem Rev 117:9086–9139. https://doi.org/10.1021/acs.chemrev.6b00772

    Article  CAS  PubMed  Google Scholar 

  7. Hudlicky M (1990) Oxidations in organic chemistry. American Chemical Society, Washington

    Google Scholar 

  8. Recupero F, Punta C (2007) Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chem Rev 107:3800–3842. https://doi.org/10.1021/cr040170k

    Article  CAS  PubMed  Google Scholar 

  9. Ishii Y, Sakaguchi S, Iwahama T (2001) Innovation of hydrocarbon oxidation with molecular oxygen and related reactions. Adv Synth Catal 343:393–427. https://doi.org/10.1002/1615-4169(200107)343:5%3C393:AID-ADSC393%3E3.0.CO;2-K

    Article  CAS  Google Scholar 

  10. Guo Z, Liu B, Zhang Q, Deng W, Wang Y, Yang Y (2014) Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 43:3480–3524. https://doi.org/10.1039/c3cs60282f

    Article  CAS  PubMed  Google Scholar 

  11. Romines KR, Freeman GA, Schaller LT, Cowan JR, Gonzales SS, Tidwell JH, Andrews CW, Stammers DK, Hazen RJ, Ferris RG (2006) Structure–activity relationship studies of novel benzophenones leading to the discovery of a potent, next generation HIV nonnucleoside reverse transcriptase inhibitor. J Med Chem 49:727–739. https://doi.org/10.1021/jm050670l

    Article  CAS  PubMed  Google Scholar 

  12. Masson PJ, Coup D, Millet J, Brown NL (1995) The effect of the β-D-xyloside naroparcil on circulating plasma glycosaminoglycans an explanation for its known antithrombotic activity in the rabbit. J Biol Chem 270:2662–2668. https://doi.org/10.1074/jbc.270.6.2662

    Article  CAS  PubMed  Google Scholar 

  13. Surburg H, Panten J (2016) Common fragrance and flavor materials: preparation, properties and uses. Wiley, New York

    Book  Google Scholar 

  14. Pan J-F, Chen K (2001) A facile catalytic oxidation of activated hydrocarbons to the carbonyl functionality mediated by Mn(II) complexes. J Mol Catal A Chem 176:19–22. https://doi.org/10.1016/S1381-1169(01)00238-2

    Article  CAS  Google Scholar 

  15. Rothenberg G, Wiener H, Sasson Y (1998) Pyridines as bifunctional co-catalysts in the CrO3-catalyzed oxygenation of olefins by t-butyl hydroperoxide. J Mol Catal A Chem 136:253–262. https://doi.org/10.1016/S1381-1169(98)00070-3

    Article  CAS  Google Scholar 

  16. Nagano T, Kobayashi S (2008) Iron catalyst for oxidation in water: surfactant-type iron complex-catalyzed mild and efficient oxidation of aryl alkanes using aqueous TBHP as oxidant in water. Chem Lett 37:1042–1043. https://doi.org/10.1246/cl.2008.1042

    Article  CAS  Google Scholar 

  17. Yi CS, Kwon K-H, Lee DW (2009) Aqueous phase C–H bond oxidation reaction of arylalkanes catalyzed by a water-soluble cationic Ru (III) complex [(pymox-Me2) 2RuCl2]+ BF4. Org Lett 11:1567–1569. https://doi.org/10.1021/ol900097y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee NH, Lee C-S, Jung D-S (1998) Selective oxidation of benzylic hydrocarbons to carbonyl compounds catalyzed by Mn(III) salen complexes. Tetrahedron Lett 39:1385–1388. https://doi.org/10.1016/S0040-4039(98)00030-6

    Article  CAS  Google Scholar 

  19. Bonvin Y, Callens E, Larrosa I, Henderson DA, Oldham J, Burton AJ, Barrett AG (2005) Bismuth-catalyzed benzylic oxidations with tert-butyl hydroperoxide. Org Lett 7:4549–4552. https://doi.org/10.1021/ol051765k

    Article  CAS  PubMed  Google Scholar 

  20. Jin C, Zhang L, Su W (2011) Direct benzylic oxidation with sodium hypochlorite using a new efficient catalytic system: TEMPO/Co (OAc) 2. Synlett 2011:1435–1438. https://doi.org/10.1055/s-0030-1260760

    Article  CAS  Google Scholar 

  21. Li H, Li Z, Shi Z (2009) Gold-catalyzed benzylic oxidation to carbonyl compounds. Tetrahedron 65:1856–1858. https://doi.org/10.1016/j.tet.2008.12.055

    Article  CAS  Google Scholar 

  22. Catino AJ, Nichols JM, Choi H, Gottipamula S, Doyle MP (2005) Benzylic oxidation catalyzed by dirhodium (II, III) caprolactamate. Org Lett 7:5167–5170. https://doi.org/10.1021/ol0520020

    Article  CAS  PubMed  Google Scholar 

  23. Sarma BB, Efremenko I, Neumann R (2015) Oxygenation of methylarenes to benzaldehyde derivatives by a polyoxometalate mediated electron transfer–oxygen transfer reaction in aqueous sulfuric acid. J Am Chem Soc 137:5916–5922. https://doi.org/10.1021/jacs.5b01745

    Article  CAS  PubMed  Google Scholar 

  24. Gaster E, Kozuch S, Pappo D (2017) Selective aerobic oxidation of methylarenes to benzaldehydes catalyzed by N-hydroxyphthalimide and cobalt (II) acetate in hexafluoropropan-2-ol. Angew Chem Int Ed 56:5912–5915. https://doi.org/10.1002/anie.201702511

    Article  CAS  Google Scholar 

  25. Lumb JP (2017) Stopping aerobic oxidation in its tracks: chemoselective synthesis of benzaldehydes from methylarenes. Angew Chem Int Ed 56:9276–9277. https://doi.org/10.1002/anie.201704160

    Article  CAS  Google Scholar 

  26. Veitch NC, Grayer RJ (2008) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 25:555–611. https://doi.org/10.1039/b718040n

    Article  CAS  PubMed  Google Scholar 

  27. He F, Mu L, Yan G-L, Liang N-N, Pan Q-H, Wang J, Reeves MJ, Duan C-Q (2010) Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057–9091. https://doi.org/10.3390/molecules15129057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mukai K, Okabe K, Hosose H (1989) Synthesis and stopped-flow investigation of antioxidant activity of tocopherols. Finding of new tocopherol derivatives having the highest antioxidant activity among phenolic antioxidants. J Org Chem 54:557–560. https://doi.org/10.1021/jo00264a011

    Article  CAS  Google Scholar 

  29. Pratap R, Ram VJ (2014) Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo [h] chromenes in organic synthesis. Chem Rev 114:10476–10526. https://doi.org/10.1021/cr500075s

    Article  CAS  PubMed  Google Scholar 

  30. Nour AM, Khalid SA, Kaiser M, Brun R, Wai’l EA, Schmidt TJ (2010) The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. J Ethnopharmacol 129:127–130. https://doi.org/10.1016/j.jep.2010.02.015

    Article  CAS  PubMed  Google Scholar 

  31. Keri RS, Budagumpi S, Pai RK, Balakrishna RG (2014) Chromones as a privileged scaffold in drug discovery: a review. Eur J Med Chem 78:340–374. https://doi.org/10.1016/j.ejmech.2014.03.047

    Article  CAS  PubMed  Google Scholar 

  32. Kaneshima T, Myoda T, Toeda K, Fujimori T, Nishizawa M (2017) Antimicrobial constituents of peel and seeds of camu-camu (Myrciaria dubia). Biosci Biotechnol Biochem 81:1461–1465. https://doi.org/10.1080/09168451.2017.1320517

    Article  CAS  PubMed  Google Scholar 

  33. Yin S-Q, Shi M, Kong T-T, Zhang C-M, Han K, Cao B, Zhang Z, Du X, Tang L-Q, Mao X (2013) Preparation of S14161 and its analogues and the discovery of 6-bromo-8-ethoxy-3-nitro-2H-chromene as a more potent antitumor agent in vitro. Bioorg Med Chem Lett 23:3314–3319. https://doi.org/10.1016/j.bmcl.2013.03.097

    Article  CAS  PubMed  Google Scholar 

  34. Rueping M, Sugiono E, Merino E (2008) Asymmetric organocatalysis: an efficient enantioselective access to benzopyranes and chromenes. Chem Eur J 14:6329–6332. https://doi.org/10.1002/chem.200800836

    Article  CAS  PubMed  Google Scholar 

  35. Shi Y, Zhou C-H (2011) Synthesis and evaluation of a class of new coumarin triazole derivatives as potential antimicrobial agents. Bioorg Med Chem Lett 21:956–960. https://doi.org/10.1016/j.bmcl.2010.12.059

    Article  CAS  PubMed  Google Scholar 

  36. Gourdeau H, Leblond L, Hamelin B, Desputeau C, Dong K, Kianicka I, Custeau D, Boudreau C, Geerts L, Cai S-X (2004) Antivascular and antitumor evaluation of 2-amino-4-(3-bromo-4, 5-dimethoxy-phenyl)-3-cyano-4H-chromenes, a novel series of anticancer agents. Mol Cancer Ther 3:1375–1384 PMID:15542776

    CAS  PubMed  Google Scholar 

  37. Magar R, Thorat P, Jadhav V, Tekale S, Dake S, Patil B, Pawar R (2013) Silica gel supported polyamine: a versatile catalyst for one pot synthesis of 2-amino-4H-chromene derivatives. J Mol Catal A Chem 374:118–124. https://doi.org/10.1016/j.molcata.2013.03.022

    Article  CAS  Google Scholar 

  38. Zghab I, Trimeche B, Mansour MB, Hassine M, Touboul D, Jannet HB (2017) Regiospecific synthesis, antibacterial and anticoagulant activities of novel isoxazoline chromene derivatives. Arab J Chem 10:S2651–S2658. https://doi.org/10.1016/j.arabjc.2013.10.008

    Article  CAS  Google Scholar 

  39. Ghorbani-Vaghei R, Toghraei-Semiromi Z, Karimi-Nami R (2011) One-pot synthesis of 4H-chromene and Dihydropyrano [3, 2-c] chromene derivatives in hydroalcoholic media. J Braz Chem Soc 22:905–909. https://doi.org/10.1590/S0103-50532011000500013

    Article  CAS  Google Scholar 

  40. Mobinikhaledi A, Foroughifar N, Mosleh T, Hamta A (2014) Synthesis of some novel chromenopyrimidine derivatives and evaluation of their biological activities. Iran J Pharm Res 13:873–879

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lagoja IM (2005) Pyrimidine as constituent of natural biologically active compounds. Chem Biodivers 2:1–50. https://doi.org/10.1002/cbdv.200490173

    Article  CAS  PubMed  Google Scholar 

  42. Achelle S, Plé N (2012) Pyrimidine ring as building block for the synthesis of functionalized π-conjugated materials. Curr Org Synth 9:163–187. https://doi.org/10.2174/157017912799829067

    Article  CAS  Google Scholar 

  43. Deshmukh M, Patil SS, Jadhav S, Pawar P (2012) Green approach for Knoevenagel condensation of aromatic aldehydes with active methylene group. Synth Commun 42:1177–1183. https://doi.org/10.1080/00397911.2010.537423

    Article  CAS  Google Scholar 

  44. Patil S, Jadhav S, Patil U (2012) Natural acid catalyzed synthesis of Schiff base under solvent-free condition: as a green approach. Arch Appl Sci Res 4:1074–1078

    CAS  Google Scholar 

  45. Pal R, Khasnobis S, Sarkar T (2013) First application of fruit juice of Citrus limon for facile and green synthesis of bis-and tris (indolyl) methanes in water. Chem J 3:7–12

    CAS  Google Scholar 

  46. Patil S, Jadhav SD, Deshmukh M (2011) Natural acid catalyzed multi-component reactions as a green approach. Arch Appl Sci Res 3:203–208

    CAS  Google Scholar 

  47. Ghahremanzadeh R, Fereshtehnejad F, Bazgir A (2010) Chromeno [2, 3-d] pyrimidine-triones synthesis by a three-component coupling reaction. Chem Pharm Bull 58:516–520. https://doi.org/10.1248/cpb.58.516

    Article  CAS  PubMed  Google Scholar 

  48. Kumar R, Raghuvanshi K, Verma RK, Singh MS (2010) Application of cyclic-1, 3-diketones in domino and multicomponent reactions: facile route to highly functionalized chromeno [2, 3-d] pyrimidinones and diazabenzo [b] fluorenones under solvent-free conditions. Tetrahedron Lett 51:5933–5936. https://doi.org/10.1016/j.tetlet.2010.09.017

    Article  CAS  Google Scholar 

  49. Bhattacharjee D, Sutradhar D, Chandra AK, Myrboh B (2017) L-proline as an efficient asymmetric induction catalyst in the synthesis of chromeno [2, 3-d] pyrimidine-triones, xanthenes in water. Tetrahedron 73:3497–3504. https://doi.org/10.1016/j.tet.2017.05.025

    Article  CAS  Google Scholar 

  50. Kumari S, Kumar D, Gajaganti S, Srivastava V, Singh S (2019) Sc (OTf) 3 catalysed multicomponent synthesis of chromeno [2, 3-d] pyrimidinetriones under solvent-free condition. Synth Commun 49:431–443. https://doi.org/10.1080/00397911.2018.1560471

    Article  CAS  Google Scholar 

  51. Shrestha N, Shrestha S, Bhattarai A (2016) Determination of ascorbic acid in different citrus fruits of Kathmandu Valley. J Med Biol Sci Res (JMBSR) 2:9–14

    Google Scholar 

  52. Liu Y, Heying E, Tanumihardjo SA (2012) History, global distribution, and nutritional importance of citrus fruits. Compr Rev Food Sci Food Saf 11:530–545. https://doi.org/10.1111/j.1541-4337.2012.00201.x

    Article  CAS  Google Scholar 

  53. Alikhani A, Foroughifar N, Pasdar H (2018) Lemon juice as a natural catalyse for synthesis of Shiff’s base: a green chemistry approach. Int J Adv Eng Res Sci (IJAERS) 5:61–65. https://doi.org/10.22161/ijaers.5.2.7

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful to IIT (BHU) for financial assistance in the form of institute fellowship and CIFC, IIT (BHU) for instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sundaram Singh.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Singh, S. & Srivastava, V. Lemon juice catalyzed C–C bond formation via C–H activation of methylarene: a sustainable synthesis of chromenopyrimidines. Mol Divers 24, 717–725 (2020). https://doi.org/10.1007/s11030-019-09980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09980-1

Keywords

Navigation