Skip to main content
Log in

Synthesis of N-heterocycles containing 1,5-disubstituted-1H-tetrazole via post-Ugi-azide reaction

  • Short Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Ugi-azide four-component reaction (UA-4CR) as development on Ugi four-component reaction (U-4CR) is the condensation reaction involving an aldehyde, an amine, an isocyanide, and an azide source. Nowadays, UA-4CR has been employed for the efficient and facile production of 1,5-disubstituted-1H-tetrazoles (1,5-DS-1H-Ts). Interestingly, the combination of 1,5-DS-1H-Ts with suitable post-transformations in a tandem manner results in the construction of various classes of heterocyclic compounds bearing 1,5-DS-1H-T moiety. This review aims to provide the application of diverse post-Ugi-azide reaction in the preparation of different N-heterocyclic compounds bearing 1,5-DS-1H-T such as substituted and fused 1,5-DS-1H-Ts.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29

Similar content being viewed by others

References

  1. Bladin J (1885) Ueber von dicyanphenylhydrazin abgeleitete verbindungen. Ber Dtsch Chem Ges 18:1544–1551. https://doi.org/10.1002/cber.188501801335

    Article  Google Scholar 

  2. Benson FR (1947) The chemistry of the tetrazoles. Chem Rev 41:1–61. https://doi.org/10.1021/cr60128a001

    Article  CAS  PubMed  Google Scholar 

  3. Maleki A, Sarvary A (2015) Synthesis of tetrazoles via isocyanide-based reactions. RSC Adv 5:60938–60955. https://doi.org/10.1039/C5RA11531K

    Article  CAS  Google Scholar 

  4. Baumann M, Baxendale IR, Ley SV, Nikbin N (2011) An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J Org Chem 7:442. https://doi.org/10.3762/bjoc.7.57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aalla S, Gilla G, Bojja Y, Anumula RR, Vummenthala PR, Padi PR (2012) An efficient and telescopic process for valsartan, an angiotensin II receptor blocker. Org Process Res Dev 16:682–686. https://doi.org/10.1021/op3000306

    Article  CAS  Google Scholar 

  6. Yamada T, Kuno A, Masuda K, Ogawa K, Sogawa M, Nakamura S, Ando T, Sano H, Nakazawa T, Ohara H (2003) Candesartan, an angiotensin II receptor antagonist, suppresses pancreatic inflammation and fibrosis in rats. J Pharmacol Exp Ther 307:17–23. https://doi.org/10.1124/jpet.103.053322

    Article  CAS  PubMed  Google Scholar 

  7. Nayak M, Batra S (2010) Isonitriles from the Baylis-Hillman adducts of acrylates: viable precursor to tetrazolo-fused diazepinones via post-Ugi cyclization. Tetrahedron Lett 51:510–516. https://doi.org/10.1016/j.tetlet.2009.11.051

    Article  CAS  Google Scholar 

  8. García G, Rodríguez-Puyol M, Rn Alajarín, Serrano I, Sánchez-Alonso P, Griera M, Vaquero JJ, Rodríguez-Puyol D, Álvarez-Builla J, MaL Díez-Marqués (2009) Losartan-antioxidant hybrids: novel molecules for the prevention of hypertension-induced cardiovascular damage. J Med Chem 52:7220–7227. https://doi.org/10.1021/jm9003957

    Article  CAS  PubMed  Google Scholar 

  9. Breschi MC, Calderone V, Digiacomo M, Martelli A, Martinotti E, Minutolo F, Rapposelli S, Balsamo A (2004) NO-sartans: a new class of pharmacodynamic hybrids as cardiovascular drugs. J Med Chem 47:5597–5600. https://doi.org/10.1021/jm049681p

    Article  CAS  PubMed  Google Scholar 

  10. Roh J, Vávrová K, Hrabálek A (2012) Synthesis and functionalization of 5-substituted tetrazoles. Eur J Org Chem 2012:6101–6118. https://doi.org/10.1002/ejoc.201200469

    Article  CAS  Google Scholar 

  11. Herr RJ (2002) 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg Med Chem 10:3379–3393. https://doi.org/10.1016/S0968-0896(02)00239-0

    Article  CAS  PubMed  Google Scholar 

  12. Zabrocki J, Smith GD, Dunbar JB, Iijima H, Marshall GR (1988) Conformational mimicry. 1. 1,5-disubstituted tetrazole ring as a surrogate for the cis amide bond. J Chem Soc Chem 110:5875–5880. https://doi.org/10.1021/ja00225a045

    Article  CAS  Google Scholar 

  13. Myznikov L, Hrabalek A, Koldobskii G (2007) Drugs in the tetrazole series. Chem Heterocycl Compd 43:1–9. https://doi.org/10.1007/s10593-007-0001-5

    Article  CAS  Google Scholar 

  14. Ostrovskii V, Trifonov R, Popova E (2012) Medicinal chemistry of tetrazoles. Russ Chem Bull 61:768–780. https://doi.org/10.1007/s11172-012-0108-4

    Article  CAS  Google Scholar 

  15. Bräse S, Gil C, Knepper K, Zimmermann V (2005) Organic azides: an exploding diversity of a unique class of compounds. Angew Chem Int Ed 44:5188–5240. https://doi.org/10.1002/anie.200400657

    Article  CAS  Google Scholar 

  16. Scriven EF, Turnbull K (1988) Azides: their preparation and synthetic uses. Chem Rev 88:297–368. https://doi.org/10.1021/cr00084a001

    Article  CAS  Google Scholar 

  17. Akritopoulou-Zanze I (2008) Isocyanide-based multicomponent reactions in drug discovery. Curr Opin Chem Biol 12:324–331. https://doi.org/10.1016/j.cbpa.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  18. Dömling A, Ugi I (2000) Multicomponent reactions with isocyanides. Angew Chem Int Ed 39:3168–3210. https://doi.org/10.1002/1521-3773(20000915)39:18%3c3168:AID-ANIE3168%3e3.0.CO;2-U

    Article  Google Scholar 

  19. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106:17–89. https://doi.org/10.1021/cr0505728

    Article  CAS  PubMed  Google Scholar 

  20. Ulaczyk-Lesanko A, Hall DG (2005) Wanted: new multicomponent reactions for generating libraries of polycyclic natural products. Curr Opin Chem Biol 9:266–276. https://doi.org/10.1016/j.cbpa.2005.04.003

    Article  CAS  PubMed  Google Scholar 

  21. Toure BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486. https://doi.org/10.1021/cr800296p

    Article  CAS  PubMed  Google Scholar 

  22. Ugi I, Meyr R, Steinbruckner C (1959) Versammlungsberichte. Angew Chem 71:373–388. https://doi.org/10.1002/ange.19590712012

    Article  Google Scholar 

  23. Ugi I, Steinbrückner C (1961) Isonitrile, II. reaktion von isonitrilen mit carbonylverbindungen, aminen und stickstoffwasserstoffsäure. Chem Ber 94:734–742. https://doi.org/10.1002/cber.19610940323

    Article  CAS  Google Scholar 

  24. Cano PA, Islas-Jácome A, González-Marrero J, Yépez-Mulia L, Calzada F, Gámez-Montaño R (2014) Synthesis of 3-tetrazolylmethyl-4H-chromen-4-ones via Ugi-azide and biological evaluation against Entamoeba histolytica, Giardia lamblia and Trichomona vaginalis. Bioorg Med Chem 22:1370–1376. https://doi.org/10.1016/j.bmc.2013.12.069

    Article  CAS  PubMed  Google Scholar 

  25. Safa KD, Shokri T, Abbasi H, Teimuri-Mofrad R (2014) One-pot synthesis of new 1,5-disubstituted tetrazoles bearing 2,2-bis(trimethylsilyl)ethenyl groups via the Ugi four-component condensation reaction catalyzed by MgBr 2 2Et2O. J Heterocycl Chem 51:80–84. https://doi.org/10.1002/jhet.1858

    Article  CAS  Google Scholar 

  26. Gunawan S, Hulme C (2013) Bifunctional building blocks in the Ugi-azide condensation reaction: a general strategy toward exploration of new molecular diversity. Org Biomol Chem 11:6036–6046. https://doi.org/10.1039/C3OB40900G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ramezanpour S, Balalaie S, Rominger F, Alavijeh NS, Bijanzadeh HR (2013) Facile, efficient and diastereoselective synthesis of α-hydrazine tetrazoles through a novel one-pot four-component reaction. Tetrahedron 69:10718–10723. https://doi.org/10.1016/j.tet.2013.10.062

    Article  CAS  Google Scholar 

  28. Ugi I, Bodesheim F (1961) Isonitrile, VIII. umsetzung von isonitrilen mit hydrazonen und stickstoffwasserstoffsäure. Chem Ber 94:2797–2801. https://doi.org/10.1002/cber.19610941031

    Article  CAS  Google Scholar 

  29. Borisov RS, Polyakov AI, Medvedeva LA, Khrustalev VN, Guranova NI, Voskressensky LG (2010) Concise approach toward tetrazolo[1,5-a][1,4]benzodiazepines via a novel multicomponent isocyanide-based condensation. Org Lett 12:3894–3897. https://doi.org/10.1021/ol101590w

    Article  CAS  PubMed  Google Scholar 

  30. El Kaim L, Grimaud L, Purumandla SR (2012) Four-component synthesis of indazole through Ugi-azide coupling. Synlett 2012:295–297. https://doi.org/10.1055/s-0031-1290075

    Article  CAS  Google Scholar 

  31. Nixey T, Kelly M, Semin D, Hulme C (2002) Short solution phase preparation of fused azepine-tetrazoles via a UDC (Ugi/de-Boc/cyclize) strategy. Tetrahedron Lett 43:3681–3684. https://doi.org/10.1016/S0040-4039(02)00636-6

    Article  CAS  Google Scholar 

  32. Unnamatla MB, Islas-Jácome A, Quezada-Soto A, Ramirez-Lopez SC, Flores-Álamo M, Gamez-Montano R (2016) Multicomponent one-pot synthesis of 3-tetrazolyl and 3-imidazo[1,2-a]pyridin tetrazolo[1,5-a]quinolines. J Org Chem 81:10576–10583. https://doi.org/10.1021/acs.joc.6b01576

    Article  CAS  PubMed  Google Scholar 

  33. Reddy BS, Kota K, Rao BM, Sridhar B, Mukkanti K (2016) Four-component, five-centered, one-pot synthesis of 1-(1H-tetrazol-5-yl)-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole derivatives. Tetrahedron Lett 57:4529–4532. https://doi.org/10.1016/j.tetlet.2016.08.067

    Article  CAS  Google Scholar 

  34. Heravi MM, Alishiri T (2014) Dimethyl acetylenedicarboxylate as a building block in heterocyclic synthesis. Adv Heterocycl Chem 113:1–66. https://doi.org/10.1016/B978-0-12-800170-7.00001-8

    Article  CAS  Google Scholar 

  35. Heravi MM, Talaei B (2014) Ketenes as privileged synthons in the syntheses of heterocyclic compounds. Part 1: Three-and four-membered heterocycles. Adv Heterocycl Chem 113:143–244. https://doi.org/10.1016/B978-0-12-800170-7.00004-3

    Article  CAS  Google Scholar 

  36. Heravi MM, Talaei B (2016) Ketenes as privileged synthons in the synthesis of heterocyclic compounds Part 3: Six-membered heterocycles. Adv Heterocycl Chem 118:195–291. https://doi.org/10.1016/bs.aihch.2015.10.007

    Article  CAS  Google Scholar 

  37. Heravi MM, Khaghaninejad S, Mostofi M (2014) Pechmann reaction in the synthesis of coumarin derivatives. Adv Heterocycl Chem 112:1–50. https://doi.org/10.1016/B978-0-12-800171-4.00001-9

    Article  CAS  Google Scholar 

  38. Heravi MM, Khaghaninejad S, Nazari N (2014) Bischler–Napieralski reaction in the syntheses of isoquinolines. Adv Heterocycl Chem 112:183–234. https://doi.org/10.1016/B978-0-12-800171-4.00005-6

    Article  CAS  Google Scholar 

  39. Heravi MM, Talaei B (2015) Ketenes as privileged synthons in the syntheses of heterocyclic compounds part 2: five-membered heterocycles. Adv Heterocycl Chem 114:147–225. https://doi.org/10.1016/bs.aihch.2015.02.001

    Article  CAS  Google Scholar 

  40. Heravi MM, Vavsari VF (2015) Recent advances in application of amino acids: key building blocks in design and syntheses of heterocyclic compounds. Adv Heterocycl Chem 114:77–145. https://doi.org/10.1016/bs.aihch.2015.02.002

    Article  CAS  Google Scholar 

  41. Heravi MM, Zadsirjan V (2015) Recent advances in the synthesis of benzo[b]furans. Adv Heterocycl Chem 117:261–376. https://doi.org/10.1016/bs.aihch.2015.08.003

    Article  CAS  Google Scholar 

  42. Saeedi M, Heravi MM, Beheshtiha YS, Oskooie HA (2010) One-pot three-component synthesis of the spiroacenaphthylene derivatives. Tetrahedron 66:5345–5348. https://doi.org/10.1016/j.tet.2010.05.067

    Article  CAS  Google Scholar 

  43. Heravi MM, Sadjadi S, Haj NM, Oskooie HA, Shoar RH, Bamoharram FF (2009) A novel multi-component synthesis of 4-arylaminoquinazolines. Tetrahedron Lett 50:943–945. https://doi.org/10.1016/j.tetlet.2008.12.044

    Article  CAS  Google Scholar 

  44. Heravi MM, Mousavizadeh F, Ghobadi N, Tajbakhsh M (2014) A green and convenient protocol for the synthesis of novel pyrazolopyranopyrimidines via a one-pot, four-component reaction in water. Tetrahedron Lett 55:1226–1228. https://doi.org/10.1016/j.tetlet.2014.01.004

    Article  CAS  Google Scholar 

  45. Sadjadi S, Heravi MM (2011) Recent application of isocyanides in synthesis of heterocycles. Tetrahedron 67:2707–2752. https://doi.org/10.1016/j.tet.2011.01.086

    Article  CAS  Google Scholar 

  46. Heravi MM, Moghimi S (2011) Catalytic multicomponent reactions based on isocyanides. J Iran Chem Soc 8:306–373. https://doi.org/10.1007/BF03249069

    Article  CAS  Google Scholar 

  47. Sadjadi S, Heravi MM, Nazari N (2016) Isocyanide-based multicomponent reactions in the synthesis of heterocycles. RSC Adv 6:53203–53272. https://doi.org/10.1039/C6RA02143C

    Article  CAS  Google Scholar 

  48. Heravi MM, Mohammadkhani L (2019) Synthesis of various N-heterocycles using the four-component Ugi reaction. Adv Heterocycl Chem. https://doi.org/10.1016/bs.aihch.2019.04.001

    Article  Google Scholar 

  49. Gunawan S, Petit J, Hulme C (2012) Concise one-pot preparation of unique bis-pyrrolidinone tetrazoles. ACS Comb Sci 14:160–163. https://doi.org/10.1021/co200209a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gunawan S, Keck K, Laetsch A, Hulme C (2012) Synthesis of peptidomimetics, δ- and ε-lactam tetrazoles. Mol Divers 16:601–606. https://doi.org/10.1007/s11030-012-9373-2

    Article  CAS  PubMed  Google Scholar 

  51. Stolyarenko VY, Evdokimov AA, Shishkin VI (2013) Synthesis of tetrazole-substituted spirocyclic γ-lactams by one-pot azido-Ugi reaction–cyclization. Mendeleev Commun 2:108–109. https://doi.org/10.1016/j.mencom.2013.03.020

    Article  CAS  Google Scholar 

  52. Medda F, Hulme C (2012) A facile and rapid route for the synthesis of novel 1,5-substituted tetrazole hydantoins and thiohydantoins via a TMSN3-Ugi/RNCX cyclization. Tetrahedron Lett 53:5593–5596. https://doi.org/10.1016/j.tetlet.2012.07.135

    Article  CAS  Google Scholar 

  53. Marcos CF, Marcaccini S, Menchi G, Pepino R, Torroba T (2008) Studies on isocyanides: synthesis of tetrazolyl-isoindolinones via tandem Ugi four-component condensation/intramolecular amidation. Tetrahedron Lett 49:149–152. https://doi.org/10.1016/j.tetlet.2007.10.154

    Article  CAS  Google Scholar 

  54. Rentería-Gómez A, Islas-Jácome A, Cruz-Jiménez AE, Manzano-Velázquez JC, Rojas-Lima S, Jiménez-Halla JOC, Gámez-Montaño R (2016) Synthesis of 2-tetrazolylmethyl-isoindolin-1-ones via a one-pot Ugi-Azide/(N-acylation/exo-Diels–Alder)/dehydration process. ACS Omega 1:943–951. https://doi.org/10.1021/acsomega.6b00281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Foley C, Shaw A, Hulme C (2016) Two-step route to diverse N-functionalized peptidomimetic-like isatins through an oxidation/intramolecular oxidative-amidation cascade of Ugi azide and ugi three-component reaction products. Org Lett 18:4904–4907. https://doi.org/10.1021/acs.orglett.6b02383

    Article  CAS  PubMed  Google Scholar 

  56. Sharma M, Khan I, Khan S, Mahar R, Shukla SK, Kant R, Chauhan PM (2015) Facile ligand-free Pd-catalyzed tandem C–C/C–N coupling reaction: a novel access to highly diverse tetrazole tag isoindoline derivatives. Tetrahedron Lett 56:5401–5408. https://doi.org/10.1016/j.tetlet.2015.08.008

    Article  CAS  Google Scholar 

  57. Wu R, Gao S, Chen X, Yang G, Pan L, Hu G, Jia P, Zhong W, Yu C (2014) Synthesis of 1-(1H-tetrazol-5-yl)-2H-isoindole derivatives through Ugi four-component and silver-catalyzed reactions. Eur J Org Chem 2014:3379–3386. https://doi.org/10.1002/ejoc.201402098

    Article  CAS  Google Scholar 

  58. Gunawan S, Ayaz M, De Moliner F, Frett B, Kaiser C, Patrick N, Xu Z, Hulme C (2012) Synthesis of tetrazolo-fused benzodiazepines and benzodiazepinones by a two-step protocol using an Ugi-azide reaction for initial diversity generation. Tetrahedron 68:5606–5611. https://doi.org/10.1016/j.tet.2012.04.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cárdenas-Galindo LE, Islas-Jácome A, Alvarez-Rodríguez NV, El Kaim L, Gámez-Montaño R (2014) Synthesis of 2-tetrazolylmethyl-2,3,4,9-tetrahydro-1H-β-carbolines by a one-pot Ugi-azide/Pictet–Spengler process. Synthesis 46:49–56. https://doi.org/10.1055/s-0033-1340051

    Article  CAS  Google Scholar 

  60. Ghandi M, Rahimi S, Zarezadeh N (2017) Synthesis of novel tetrazole containing quinoline and 2,3,4,9-tetrahydro-1H-β-carboline derivatives. J Heterocycl Chem 54:102–109. https://doi.org/10.1002/jhet.2546

    Article  CAS  Google Scholar 

  61. Ghandi M, Ahangaran MM, Abbasi A (2017) Sequential one-pot five-component synthesis of tetrazole-based spirotetrahydro-β-carbolines. J Iran Chem Soc 14:1131–1137. https://doi.org/10.1007/s13738-017-1063-7

    Article  CAS  Google Scholar 

  62. Gordillo-Cruz RE, Rentería-Gómez A, Islas-Jácome A, Cortes-García CJ, Díaz-Cervantes E, Robles J, Gámez-Montaño R (2013) Synthesis of 3-tetrazolylmethyl-azepino[4,5-b] indol-4-ones in two reaction steps:(Ugi-azide/N-acylation/SN2)/free radical cyclization and docking studies to a 5-Ht 6 model. Org Biomol Chem 11:6470–6476. https://doi.org/10.1039/C3OB41349G

    Article  CAS  PubMed  Google Scholar 

  63. Alvarez-Rodríguez NV, Islas-Jácome A, Rentería-Gómez A, Cárdenas-Galindo LE, Unnamatla MB, Gámez-Montaño R (2018) Synthesis of 1′-tetrazolylmethyl-spiro [pyrrolidine-3, 3′-oxindoles] via two coupled one-pot processes Ugi-azide/Pictet–Spengler and oxidative spiro-rearrangement. New J Chem 42:1600–1603. https://doi.org/10.1039/C7NJ03829A

    Article  Google Scholar 

  64. Bienaymé H, Bouzid K (1998) Synthesis of rigid hydrophobic tetrazoles using an Ugi multi-component heterocyclic condensation. Tetrahedron Lett 39:2735–2738. https://doi.org/10.1016/S0040-4039(98)00283-4

    Article  Google Scholar 

  65. Nixey T, Kelly M, Hulme C (2000) The one-pot solution phase preparation of fused tetrazole-ketopiperazines. Tetrahedron Lett 41:8729–8733. https://doi.org/10.1016/S0040-4039(00)01563-X

    Article  CAS  Google Scholar 

  66. Umkehrer M, Kolb J, Burdack C, Ross G, Hiller W (2004) Synthesis of tetrazolopiperazine building blocks by a novel multi-component reaction. Tetrahedron Lett 45:6421–6424. https://doi.org/10.1016/j.tetlet.2004.06.133

    Article  CAS  Google Scholar 

  67. Kalinski C, Umkehrer M, Gonnard S, Jäger N, Ross G, Hiller W (2006) A new and versatile Ugi/SNAr synthesis of fused 4,5-dihydrotetrazolo[1,5-a]quinoxalines. Tetrahedron Lett 47:2041–2044. https://doi.org/10.1016/j.tetlet.2006.01.027

    Article  CAS  Google Scholar 

  68. Patil P, Kurpiewska K, Kalinowska-Tłuścik J, Dömling A (2017) Ammonia-promoted one-pot tetrazolopiperidinone synthesis by Ugi reaction. ACS Comb Sci 19:343–350. https://doi.org/10.1021/acscombsci.7b00033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wang Y, Patil P, Kurpiewska K, Kalinowska-Tluscik J, Dömling A (2017) Two cycles with one catch: hydrazine in Ugi 4-CR and its postcyclizations. ACS Comb Sci 19:193–198. https://doi.org/10.1021/acscombsci.7b00009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yerande SG, Newase KM, Singh B, Boltjes A, Dömling A (2014) Application of cyclic ketones in MCR: Ugi/amide coupling based synthesis of fused tetrazolo[1,5-a][1,4]benzodiazepines. Tetrahedron Lett 55:3263–3266. https://doi.org/10.1016/j.tetlet.2014.04.040

    Article  CAS  Google Scholar 

  71. Borisov R, Polyakov A, Medvedeva L, Guranova N, Voskressensky L (2012) Synthesis of tetrazolodiazepines by a five-centered four-component azide Ugi reaction. Scope and limitations. Russ Chem Bull 61:1609–1615. https://doi.org/10.1007/s11172-012-0214-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the Research Council of Alzahra University. MMH also appreciate the financial support granted by Iran National Science Foundation (INSF) under the given individual research chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid M. Heravi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadkhani, L., Heravi, M.M. Synthesis of N-heterocycles containing 1,5-disubstituted-1H-tetrazole via post-Ugi-azide reaction. Mol Divers 24, 841–853 (2020). https://doi.org/10.1007/s11030-019-09972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09972-1

Keywords

Navigation