Skip to main content
Log in

Nucleophilic phenylation: a remarkable application of alkoxymethyltriphenylphosphonium salts

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A new application of α-alkoxymethylphosphonium salts in the nucleophilic phenylation of carbonyl compounds is demonstrated. Phenylation of aldehydes, ketones and acyl halides were studied by employing α-alkoxymethyltriphenylphosphonium halides in the presence of lithium hydroxide.

Graphic abstract

New application of α-alkoxymethyltriphenylphosphonium salts. Metal-free, mild and selective phenylation. Easy preparation and handling of the reagent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

References

  1. Hatano M, Ito O, Suzuki S, Ishihara K (2010) Zinc (II)-catalyzed addition of Grignard reagents to ketones. J Org Chem 75:5008–5016. https://doi.org/10.1021/jo100563p

    Article  CAS  PubMed  Google Scholar 

  2. Sugimoto O, Yamada S, Tanji K (2010) Preparation of nitrogen-containing π-deficient heteroaromatic Grignard reagents: oxidative magnesiation of nitrogen-containing π-deficient halogenoheteroaromatics using active magnesium. J Org Chem 68:2054–2057. https://doi.org/10.1021/jo026492a

    Article  CAS  Google Scholar 

  3. Zong H, Huang H, Liu J, Bian G, Song L (2012) Added-metal-free catalytic nucleophilic addition of Grignard reagents to ketones. J Org Chem 77:4645–4652. https://doi.org/10.1021/jo3004277

    Article  CAS  PubMed  Google Scholar 

  4. Kunishima M, Hioki K, Kono K, Sakuma T, Tani S (1994) Barbier-type reactions of aryl helides with ketones mediated samarium diiodide. Chem Pharm Bull 42:2190–2192

    Article  CAS  Google Scholar 

  5. Hatano M, Ito O, Suzuki S, Ishihara K (2010) Zinc (II)-catalyzed Grignard additions to ketones with RMgBr and RMgI. Chem Commun 46:2674–2676

    Article  CAS  Google Scholar 

  6. Therkelsen FD, Rottlander M, Thorup N, Pedersen EB (2004) 4-metalated condensed pyrimidines: their preparation and reaction with aldehydes under barbier-type conditions. Org Lett 6:1991–1994. https://doi.org/10.1021/ol049432v

    Article  CAS  PubMed  Google Scholar 

  7. Yang L, Correia CA, Li CJ (2011) Grignard-type arylation of aldehydes via a rhodium-catalyzed C–H activation under mild conditions. Adv Synth Catal 353:1269–1273. https://doi.org/10.1002/adsc.201100232

    Article  CAS  Google Scholar 

  8. Zhou F, Li CJ (2014) The Barbier–Grignard-type arylation of aldehydes using unactivated aryl iodides in water. Nat Commun 5:4254–4260

    Article  CAS  Google Scholar 

  9. Liao YX, Xing CH, Hu QS (2012) Rhodium (I)/diene-catalyzed addition reactions of arylborons with ketones. Org Lett 14:1544–1547. https://doi.org/10.1021/ol300275s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tetsuya Y, Tetsuo O, Yoshihiko I (2005) Palladium-catalyzed addition of arylboronic acids to aldehydes. Org Lett 7:4153–4155. https://doi.org/10.1021/ol051501y

    Article  CAS  Google Scholar 

  11. Sakai M, Ueda M, Miyaura N (1998) Rhodium-catalyzed addition of organoboronic acids to aldehydes. Angew Chem Int Ed 37:3279–3281. https://doi.org/10.1002/(SICI)1521-3773(19981217)37:23<3279::AID-ANIE327s9>3.0.CO;2-M

    Article  CAS  Google Scholar 

  12. Zou T, Pi S, Li JH (2009) FeCl3-catalyzed 1,2-addition reactions of aryl aldehydes with arylboronic acids. Org Lett 11:453–456. https://doi.org/10.1021/ol802529p

    Article  CAS  PubMed  Google Scholar 

  13. Tomita D, Kanai M, Shibasaki M (2006) Nucleophilic activation of alkenyl and aryl boronates by a chiral CuIF complex: catalytic enantioselective alkenylation and arylation of aldehydes. Chem Asian J 1:161–166. https://doi.org/10.1002/asia.200600068

    Article  CAS  PubMed  Google Scholar 

  14. Liao YX, Xing CH, He P, Hu QS (2008) Orthoplatinated Triarylphosphite as a highly efficient catalyst for addition reactions of arylboronic acids with aldehydes: low catalyst loading catalysis and a new tandem reaction sequence. Org Lett 10:2509–2512. https://doi.org/10.1021/ol800774c

    Article  CAS  PubMed  Google Scholar 

  15. Oi S, Moro M, Inoue Y (1997) Rhodium-catalysed arylation of aldehydes with arylstannanes. Chem Commun 17:1621–1622

    Article  Google Scholar 

  16. Oi S, Moro M, Inoue Y (2001) Rhodium-catalyzed addition of phenylmethyldifluorosilane to aldehydes. Organometallics 20:1036–1037. https://doi.org/10.1021/om0009684

    Article  CAS  Google Scholar 

  17. Li CJ, Meng Y (2000) Grignard-type carbonyl phenylation in water and under an air atmosphere. J Am Chem Soc 122:9538–9539. https://doi.org/10.1021/ja001699b

    Article  CAS  Google Scholar 

  18. Gao F, Deng XJ, Tang Y, Tang JP, Yang J, Zhang YM (2014) A simple and efficient copper oxide-catalyzed Barbier–Grignard reaction of unactivated aryl or alkyl bromides with ester. Tetrahedron Lett 55:880–883

    Article  CAS  Google Scholar 

  19. Kopmehl G, Hoppe FD (1993) Liquid crystalline compounds in the thiophene series. Synthesis and characterization of liquid crystalline vinylenes with thiophene moieties and carbaldehyde groups. Liq Cryst 15:383–393. https://doi.org/10.1080/02678299308029139

    Article  Google Scholar 

  20. Effenberger F, Meller P, Ringsdorf H, Schlosser H (1991) Properties of amphiphilic terminally substituted conjugated nonaene-and 2-docosylnonaene carboxylic acids in monolayers at the air–water interface. Adv Mater 3:555–558. https://doi.org/10.1002/adma.19910031108

    Article  CAS  Google Scholar 

  21. Kolodiazhnyi OI (1996) C-element-substituted phosphorus ylids. Tetrahedron 52:1855–1929

    Article  CAS  Google Scholar 

  22. Hwang LK, Na Y, Lee J, Do Y, Chang S (2005) Tetraarylphosphonium halides as arylating reagents in Pd-catalyzed heck and cross-coupling reactions. Angew Chem Int Ed 44:6166–6169. https://doi.org/10.1002/anie.200501582

    Article  CAS  Google Scholar 

  23. Horner L, Winkler H, Rapp A, Mentrup A (1961) Phosphororganische verbindungen optisch aktive tertiäre Phosphine aus optisch aktiven quartären Phosphoniumsalzen. Tetrahedron Lett 5:161–166

    Article  Google Scholar 

  24. Roy MN, Poupon JC, Charette A (2009) Tetraarylphosphonium salts as soluble supports for oxidative catalysts and reagents. J Org Chem 74:8510–8515. https://doi.org/10.1021/jo901509z

    Article  CAS  PubMed  Google Scholar 

  25. McNulty J, Cheedhar S, Bender TP, Coggan JA (2007) A Pronounced anionic effect in the Pd-Catalyzed Buchwald–Hartwig amination reaction revealed in phosphonium salt ionic liquids. Eur J Org Chem 9:1423–1428. https://doi.org/10.1002/ejoc.200700005

    Article  CAS  Google Scholar 

  26. Winkel A, Reddy PVG, Wilhelm R (2008) Recent advances in the synthesis and application of chiral ionic liquids. Synthesis 7:999–1016. https://doi.org/10.1055/s-2008-1066986

    Article  CAS  Google Scholar 

  27. Cao H, McNamee L, Alper H (2008) Palladium-catalyzed thiocarbonylation of iodoarenes with thiols in phosphonium salt ionic liquids. J Org Chem 73:3530–3534. https://doi.org/10.1021/jo800287s

    Article  CAS  PubMed  Google Scholar 

  28. Zurawinski R, Donnadieu B, Mikolajczyk M, Chauvin R (2004) Palladium complexes of a chiral P,C-chelating phosphino-(sulfinylmethyl) phosphonium ylide ligand. J Organomet Chem 689:380–386

    Article  CAS  Google Scholar 

  29. Leglaye P, Donadieu B, Brunet JJ, Chauvin R (1998) Methyldiopium and methylbinapium, chiral phosphonium-phosphine ligands. Tetrahedron Lett 39:9179–9182

    Article  CAS  Google Scholar 

  30. Ohta T, Sasayama H, Nakajima O, Kurahashi N, Fujii T, Furukawa I (2003) Asymmetric allylic substitution catalyzed by palladium–Yliphos complex. Tetrahedron Asymmetry 14:537–542

    Article  CAS  Google Scholar 

  31. Hamdi A, Nam KC, Ryu BJ, Kim JS, Vicens J (2004) Anion complexation. A ditriphenylphosphonium calix[4]arene derivative as a novel receptor for anions. Tetrahedron Lett 45:4689–4692

    Article  CAS  Google Scholar 

  32. Laleu B, Bernardinelli G, Chauvin R, Lacour J (2006) Trimesitylmethylphosphonium cation. Supramolecular stereocontrol and simple enantiomerization mechanism determination. J Org Chem 71:7412–7416. https://doi.org/10.1021/jo061097w

    Article  CAS  PubMed  Google Scholar 

  33. Kareem MA, Mjalli FS, Hashim MA, AlNashef IM (2010) Phosphonium-based ionic liquids analogues and their physical properties. J Chem Eng Data 55:4632–4637. https://doi.org/10.1021/je100104v

    Article  CAS  Google Scholar 

  34. Shahbaz K, Mjalli FS, Hashim MA, AlNashef IM (2011) Using deep eutectic solvents based on methyl triphenyl phosphunium bromide for the removal of glycerol from palm-oil-based biodiesel. Energy Fuels 25:2671–2678. https://doi.org/10.1021/ef2004943

    Article  CAS  Google Scholar 

  35. Qinghua Z, Karine V, Sebastien R, Francois J (2012) Deep eutectic solvents: syntheses, properties and applications. Chem Soc Rev 41:7108–7146

    Article  Google Scholar 

  36. Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chem 13:82–90

    Article  CAS  Google Scholar 

  37. Kong K, Moussa Z, Lee C, Romo D (2011) Total synthesis of the spirocyclic imine marine toxin (−)-gymnodimine and an unnatural C4-epimer. J Am Chem Soc 133:19844. https://doi.org/10.1021/ja207385y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Su Q, Panek JS (2005) Total synthesis of (+)-leucascandrolide A. Angew Chem Int Ed 41(21):4098–4101. https://doi.org/10.1002/anie.200462408

    Article  CAS  Google Scholar 

  39. Martina S, Qian W, Renata R, Jieping Z (2016) Synthesis of vinyl isocyanides and development of a convertible isonitrile. Org Lett 18:1622–1625. https://doi.org/10.1021/acs.orglett.6b00483

    Article  CAS  Google Scholar 

  40. Gerhard Z, Wolf PF (1985) Cyclodextrins as building blocks for supramolecular structures and functional units. Angew Chem Int Ed Engl 11:979. https://doi.org/10.1002/anie.199408031

    Article  Google Scholar 

  41. Donald AW, Donald JB (2012) Chemoselective halogenation of 2-hydroperfluoroalkyl aldehydes. J Fluor Chem 139:4–11

    Article  Google Scholar 

  42. Isabel PK, Elise C, Martin JW, Steen I, Jan HM, Henk H (2012) Total syntheses of mitragynine, paynantheine and speciogynine via an enantioselective thiourea catalysed Pictet Spengler reaction. Chem Commun 48:12243–12245

    Article  Google Scholar 

  43. Saidi MR, Mojtahedi MM, Kaamyabi S, Bolourtchian M (2000) Application of microwave irradiation techniques for the witting reaction. J Sci I R Iran 11:217

    CAS  Google Scholar 

  44. Ulf P, Gundula L, Martina R (1995) First synthesis of chiral 3-vinylindoles as 4π-components for diels-alder reactions. J Heterocycl Chem 32:201. https://doi.org/10.1002/jhet.5570320133

    Article  Google Scholar 

  45. Yun L, Zhang Q, Wittlin S, Jin H, Yikang W (2009) Synthesis and in vitro antimalarial activity of spiro-analogues of peroxyplakoric acids. Tetrahedron 65:6972–6985

    Article  Google Scholar 

  46. Westheimer FH (1987) Why nature chose phosphates. Science 235:1173

    Article  CAS  Google Scholar 

  47. Montchamp JL (2014) Phosphinate chemistry in the 21st century: a viable alternative to the use of phosphorus trichloride in organophosphorus synthesis. Acc Chem Res 47:77. https://doi.org/10.1021/ar400071v

    Article  CAS  PubMed  Google Scholar 

  48. Deng Z, Lin JH, Xiao JC (2016) Nucleophilic arylation with tetraarylphosphonium salts. Nat Commun 7:10337

    Article  Google Scholar 

  49. Szymczyk M (2017) Unexpected course of Wittig reaction when using cinnamyl aldehyde as a substrate. Phosphorus Sulfur Silicon Relat Elem 192(3):264–266. https://doi.org/10.1080/10426507.2016.1244203

    Article  CAS  Google Scholar 

  50. Gondal HY, Cheema ZM, Zaidi JH, Yousuf S, Choudhary MI (2018) Facile synthesis of α-alkoxymethyltriphenylphosphonium iodides: new application of PPh3/I2. Chem Cent J 12:62. https://doi.org/10.1186/s13065-018-0421-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gondal HY, Cheema ZM, Siddiqui H, Choudhary MI (2018) Facile efficient synthesis of alkoxymethylphosphonium tetrafluoroborates; valuable alternative to halide analogues. Chem Afr 1:97–102. https://doi.org/10.1007/s42250-018-0009-5

    Article  CAS  Google Scholar 

  52. Fujioka H, Goto A, Otake K, Kubo O, Yahata K, Sawama Y, Maegawa T (2010) Remarkable effect of phosphine on the reactivity of O,P-acetal–efficient substitution reaction of O,P-acetal. Chem Commun 46:3976

    Article  CAS  Google Scholar 

  53. Kalvoda J, Grob J, Bjelakovíć M, Lorenc L, Mihailovíć ML (1997) Photolysis of steroidal 20-aryl-substituted 11-nitrites. Helv Chim Acta 80(4):1221–1228

    Article  CAS  Google Scholar 

  54. Tinant B, Declercq JP, Bjelakovic M, Lorenc L, Mihailovic L (1994) Crystal structure of (20R)-11β, 20-dihydroxy-20-phenylpreg-4-en-3-one. Bull Soc Chim Belges 103(4):157–161

    Article  CAS  Google Scholar 

  55. Clerici A, Porta O (1987) Halide exchange and reduction of phenacyl halides promoted by aqueous titanium(III) salts at various pHs. Mechanistic considerations. Tetrahedron Lett 28(14):1541–1544. https://doi.org/10.1016/S0040-4039(01)81037-6

    Article  CAS  Google Scholar 

  56. Wiles C, Watts P (2007) Parallel synthesis in an EOF-based micro reactor. Chem Commun 46:4928–4930

    Article  Google Scholar 

  57. Hussey BJ, Johnstone RA, Boehm P, Entwistle ID (1982) Metal-assisted reactions—12: unusual selectivity in the reduction of ketones with zinc or cadmium bis-tetrahydroborate/dimethylformamide complex. Tetrahedron 38(24):3769–3774. https://doi.org/10.1016/0040-4020(82)80090-2

    Article  CAS  Google Scholar 

  58. Hiiro T, Kambe N, Ogawa A, Miyoshi N, Murai S, Sonoda N (1987) Lithium–tellurium exchange: a new entry to organolithium compounds. Angew Chem Int Ed Engl 26(11):1187–1188. https://doi.org/10.1002/anie.198711871

    Article  Google Scholar 

  59. Wei H, Yin L, Luo H, Li X, Chan AS (2011) Structural influence of chiral tertiary aminonaphthol ligands on the asymmetric phenyl transfer to aromatic aldehydes. Chirality 23(3):222–227. https://doi.org/10.1002/chir.20903

    Article  CAS  PubMed  Google Scholar 

  60. Fujii T, Koike T, Mori A, Osakada K (2002) Rhodium-catalyzed addition of aryl-and alkenylsilanediols to aldehydes. Synlett 2002(02):0298–0300. https://doi.org/10.1055/s-2002-19786

    Article  Google Scholar 

  61. Maerten E, Agbossou-Niedercorn F, Castanet Y, Mortreux A (2008) Preparation of pyridinyl aryl methanol derivatives by enantioselective hydrogenation of ketones using chiral Ru (diphosphine)(diamine) complexes. Attribution of their absolute configuration by 1H-NMR spectroscopy using Mosher’s reagent. Tetrahedron 64(37):8700–8708. https://doi.org/10.1016/j.tet.2008.06.104

    Article  CAS  Google Scholar 

  62. Davies AG, Kenyon J, Salame LWF (1957) 614 The resolution and reactions of tertiary alcohols: 2-phenylbutan-2-ol and 3-methylhexan-3-ol. J Chem Soc. https://doi.org/10.1039/jr9570003148

    Article  Google Scholar 

  63. Sigman ME, Barbas JT, Corbett S, Chen Y, Ivanov I, Dabestani R (2001) Photochemical reactions of trans-stilbene and 1,1-diphenylethylene on silica gel: mechanisms of oxidation and dimerization. J Photochem Photobiol A 138(3):269–274. https://doi.org/10.1016/S1010-6030(00)00407-X

    Article  CAS  Google Scholar 

  64. Hatano M, Matsumura T, Ishihara K (2005) Highly alkyl-selective addition to ketones with magnesium ate complexes derived from Grignard reagents. Org Lett 7(4):573–576. https://doi.org/10.1021/ol047685i

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are obliged to the Pakistan Science Foundation (PSF), Islamabad, for the support of this research project (P-US/Chem 427).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira Yasmeen Gondal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1619 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheema, Z.M., Gondal, H.Y., Raza, A.R. et al. Nucleophilic phenylation: a remarkable application of alkoxymethyltriphenylphosphonium salts. Mol Divers 24, 455–462 (2020). https://doi.org/10.1007/s11030-019-09966-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09966-z

Keywords

Navigation