Skip to main content
Log in

Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Cellobiose dehydrogenase (CDH, EC 1.1.99.18) from white rot fungi Phanerochaete chrysosporium can be used for constructing biosensors and biofuel cells, for bleaching cotton in textile industry, and recently, the enzyme has found an important application in biomedicine as an antimicrobial and antibiofilm agent. Stability and activity of the wild-type (wt) CDH and mutants at methionine residues in the presence of hydrogen peroxide were investigated. Saturation mutagenesis libraries were made at the only methionine in heme domain M65 and two methionines M685 and M738 in the flavin domain that were closest to the active site. After screening the libraries, three mutants with increased activity and stability in the presence of peroxide were found, M65F with 70% of residual activity after 6 h of incubation in 0.3 M hydrogen peroxide, M738S with 80% of residual activity and M685Y with over 90% of residual activity compared to wild-type CDH that retained 40% of original activity. Combined mutants showed no activity. The most stable mutant M685Y with 5.8 times increased half-life in the presence of peroxide showed also 2.5 times increased kcat for lactose compared to wtCDH and could be good candidate for applications in biofuel cells and biocatalysis for lactobionic acid production.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Harreither W, Sygmund C, Augustin M, Narciso M, Rabinovich ML, Gorton L, Haltrich D, Ludwig R (2011) Catalytic properties and classification of cellobiose dehydrogenases from ascomycetes. Appl Environ Microbiol 77(5):1804–1815. https://doi.org/10.1128/AEM.02052-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laurent CVFP, Breslmayr E, Tunega D, Ludwig R, Oostenbrink C (2019) Interaction between cellobiose dehydrogenase and lytic polysaccharide monooxygenase. Biochemistry 58(9):1226–1235. https://doi.org/10.1021/acs.biochem.8b01178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hallberg BM, Henriksson G, Pettersson G, Divne C (2002) Crystal structure of the flavoprotein domain of the extracellular flavocytochrome cellobiose dehydrogenase. J Mol Biol 315(3):421–434. https://doi.org/10.1006/jmbi.2001.5246

    Article  CAS  PubMed  Google Scholar 

  4. Desriani Ferri S, Sode K (2010) Functional expression of Phanerochaete chrysosporium cellobiose dehydrogenase flavin domain in Escherichia coli. Biotechnol Lett 32(6):855–859. https://doi.org/10.1007/s10529-010-0215-y

    Article  CAS  PubMed  Google Scholar 

  5. Sygmund C, Santner P, Krondorfer I, Peterbauer CK, Alcalde M, Nyanhongo GS, Guebitz GM, Ludwig R (2013) Semi-rational engineering of cellobiose dehydrogenase for improved hydrogen peroxide production. Microb Cell Fact 12:38. https://doi.org/10.1186/1475-2859-12-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Henriksson G, Johansson G, Pettersson G (1993) Is cellobiose oxidase from Phanerochaete chrysosporium a one-electron reductase? Biochem Biophys Acta 1144(2):184–190. https://doi.org/10.1016/0005-2728(93)90171-B

    Article  CAS  PubMed  Google Scholar 

  7. Morpeth FF (1985) Some properties of cellobiose oxidase from the white-rot fungus Sporotrichum pulverulentum. Biochem J 228(3):557–564. https://doi.org/10.1042/bj2280557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rogers MS, Jones GD, Antonini G, Wilson MT, Brunori M (1994) Electron transfer from Phanerochaete chrysosporium cellobiose oxidase to equine cytochrome c and Pseudomonas aeruginosa cytochrome c-551. Biochem J 298(Pt 2):329–334. https://doi.org/10.1042/bj2980329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Samejima M, Eriksson KEL (1992) A comparison of the catalytic properties of cellobiose:quinone oxidoreductase and cellobiose oxidase from Phanerochaete chrysosporium. Eur J Biochem. https://doi.org/10.1111/j.1432-1033.1992.tb17026.x

    Article  PubMed  Google Scholar 

  10. Daniel K, Roland L (2016) Cellobiose dehydrogenase: an essential enzyme for lignocellulose degradation in nature—a review/Cellobiosedehydrogenase: Ein essentielles Enzym für den Lignozelluloseabbau in der Natur – Eine Übersicht. Die Bodenkultur: J Land Manag Food Environ 67(3):145–163. https://doi.org/10.1515/boku-2016-0013

    Article  CAS  Google Scholar 

  11. Ludwig R, Ortiz R, Schulz C, Harreither W, Sygmund C, Gorton L (2013) Cellobiose dehydrogenase modified electrodes: advances by materials science and biochemical engineering. Anal Bioanal Chem 405(11):3637–3658. https://doi.org/10.1007/s00216-012-6627-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ludwig R, Harreither W, Tasca F, Gorton L (2010) Cellobiose dehydrogenase: a versatile catalyst for electrochemical applications. ChemPhysChem 11(13):2674–2697. https://doi.org/10.1002/cphc.201000216

    Article  CAS  PubMed  Google Scholar 

  13. Bollella P, Ludwig R, Gorton L (2017) Cellobiose dehydrogenase: insights on the nanostructuration of electrodes for improved development of biosensors and biofuel cells. Appl Mater Today 9:319–332. https://doi.org/10.1016/j.apmt.2017.08.009

    Article  Google Scholar 

  14. Bollella P, Gorton L, Antiochia R (2018) Direct electron transfer of dehydrogenases for development of 3rd generation biosensors and enzymatic fuel cells. Sensors. https://doi.org/10.3390/s18041319

    Article  PubMed  Google Scholar 

  15. Bollella P, Gorton L (2018) Enzyme based amperometric biosensors. Curr Opin Electrochem 10:157–173. https://doi.org/10.1016/j.coelec.2018.06.003

    Article  CAS  Google Scholar 

  16. Henriksson G, Johansson G, Pettersson G (2000) A critical review of cellobiose dehydrogenases. J Biotechnol 78(2):93–113. https://doi.org/10.1016/s0168-1656(00)00206-6

    Article  CAS  PubMed  Google Scholar 

  17. Nyanhongo GS, Thallinger B, Guebitz GM (2017) Cellobiose dehydrogenase-based biomedical applications. Process Biochem 59:37–45. https://doi.org/10.1016/j.procbio.2017.02.023

    Article  CAS  Google Scholar 

  18. Kim YH, Berry AH, Spencer DS, Stites WE (2001) Comparing the effect on protein stability of methionine oxidation versus mutagenesis: steps toward engineering oxidative resistance in proteins. Protein Eng 14(5):343–347

    Article  CAS  Google Scholar 

  19. Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18(1):93–105

    Article  CAS  Google Scholar 

  20. Invitrogen (2004) pYES2, version J. Invitrogen, CA

    Google Scholar 

  21. Prodanovic R, Milosavic N, Slobodan MJ, Zoran MV (2003) Immobilization of invertase and glucoamylase on a macroporous copolymer of etyleneglycoldimethacrylate and glycidyl methacrylate and potential applications in biotechnology. Hemijska Ind 57(11):536–542. https://doi.org/10.2298/HEMIND0311536P

    Article  CAS  Google Scholar 

  22. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685. https://doi.org/10.1038/227680a0

    Article  CAS  PubMed  Google Scholar 

  23. Yoshida M, Ohira T, Igarashi K, Nagasawa H, Aida K, Hallberg BM, Divne C, Nishino T, Samejima M (2001) Production and characterization of recombinant Phanerochaete chrysosporium cellobiose dehydrogenase in the methylotrophic yeast Pichia pastoris. Biosci Biotechnol Biochem 65(9):2050–2057. https://doi.org/10.1271/bbb.65.2050

    Article  CAS  PubMed  Google Scholar 

  24. Hallberg BM, Bergfors T, Backbro K, Pettersson G, Henriksson G, Divne C (2000) A new scaffold for binding haem in the cytochrome domain of the extracellular flavocytochrome cellobiose dehydrogenase. Structure 8(1):79–88. https://doi.org/10.1016/S0969-2126(00)00082-4

    Article  CAS  PubMed  Google Scholar 

  25. Rotsaert FA, Li B, Renganathan V, Gold MH (2001) Site-directed mutagenesis of the heme axial ligands in the hemoflavoenzyme cellobiose dehydrogenase. Arch Biochem Biophys 390(2):206–214. https://doi.org/10.1006/abbi.2001.2362

    Article  CAS  PubMed  Google Scholar 

  26. Blažić M, Balaž AM, Tadić V, Draganić B, Ostafe R, Fischer R, Prodanović R (2019) Protein engineering of cellobiose dehydrogenase from Phanerochaete chrysosporium in yeast Saccharomyces cerevisiae InvSc1 for increased activity and stability. Biochem Eng J. https://doi.org/10.1016/j.bej.2019.03.025

    Article  Google Scholar 

  27. Zamocky M, Ludwig R, Peterbauer C, Hallberg BM, Divne C, Nicholls P, Haltrich D (2006) Cellobiose dehydrogenase: a flavocytochrome from wood-degrading, phytopathogenic and saprotropic fungi. Curr Protein Pept Sci 7(3):255–280. https://doi.org/10.2174/138920306777452367

    Article  CAS  PubMed  Google Scholar 

  28. Prodanovic O, Prokopijevic M, Spasojevic D, Stojanovic Z, Radotic K, Knezevic-Jugovic ZD, Prodanovic R (2012) Improved covalent immobilization of horseradish peroxidase on macroporous glycidyl methacrylate-based copolymers. Appl Biochem Biotechnol 168(5):1288–1301. https://doi.org/10.1007/s12010-012-9857-7

    Article  CAS  PubMed  Google Scholar 

  29. Bao W, Usha SN, Renganathan V (1993) Purification and characterization of cellobiose dehydrogenase, a novel extracellular hemoflavoenzyme from the white-rot fungus Phanerochaete chrysosporium. Arch Biochem Biophys 300(2):705–713. https://doi.org/10.1006/abbi.1993.1098

    Article  CAS  PubMed  Google Scholar 

  30. Blazic M, Kovacevic G, Prodanovic O, Ostafe R, Gavrovic-Jankulovic M, Fischer R, Prodanovic R (2013) Yeast surface display for the expression, purification and characterization of wild-type and B11 mutant glucose oxidases. Protein Expr Purif 89(2):175–180. https://doi.org/10.1016/j.pep.2013.03.014

    Article  CAS  PubMed  Google Scholar 

  31. Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69(2):987–995. https://doi.org/10.1128/aem.69.2.987-995.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chu FK, Maley F (1980) The effect of glucose on the synthesis and glycosylation of the polypeptide moiety of yeast external invertase. J Biol Chem 255(13):6392–6397

    CAS  PubMed  Google Scholar 

  33. Kovačević G, Ostafe R, Fischer R, Prodanović R (2019) Influence of methionine residue position on oxidative stability of glucose oxidase from Aspergillus niger. Biochem Eng J. https://doi.org/10.1016/j.bej.2019.03.016

    Article  Google Scholar 

  34. Rotsaert FAJ, Renganathan V, Gold MH (2003) Role of the flavin domain residues, His689 and Asn732, in the catalytic mechanism of cellobiose dehydrogenase from Phanerochaete chrysosporium. Biochemistry 42(14):4049–4056. https://doi.org/10.1021/bi027092k

    Article  CAS  PubMed  Google Scholar 

  35. Kovacevic G, Blazic M, Draganic B, Ostafe R, Gavrovic-Jankulovic M, Fischer R, Prodanovic R (2014) Cloning, heterologous expression, purification and characterization of M12 mutant of Aspergillus niger glucose oxidase in yeast Pichia pastoris KM71H. Mol Biotechnol 56(4):305–311. https://doi.org/10.1007/s12033-013-9709-x

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by funds from the Ministry of Education and Science, Republic of Serbia by the Project Nos. III46010, ON172049 and ON173017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radivoje Prodanović.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaž, A.M., Stevanović, J., Ostafe, R. et al. Semi-rational design of cellobiose dehydrogenase for increased stability in the presence of peroxide. Mol Divers 24, 593–601 (2020). https://doi.org/10.1007/s11030-019-09965-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09965-0

Keywords

Navigation